Weekly pain trajectories among people with knee or hip osteoarthritis participating in a digitally delivered first-line exercise and education treatment

医学 骨关节炎 物理疗法 多项式logistic回归 队列 逻辑回归 膝关节痛 潜在类模型 体质指数 观察研究 物理医学与康复 内科学 替代医学 统计 机器学习 病理 计算机科学 数学
作者
Ali Kiadaliri,Helena Hörder,Stefan Lohmander,Leif Dahlberg
出处
期刊:Pain Medicine [Oxford University Press]
卷期号:25 (4): 291-299
标识
DOI:10.1093/pm/pnad167
摘要

Abstract Objective Digital self-management programs are increasingly used in the management of osteoarthritis (OA). Little is known about heterogeneous patterns in response to these programs. We describe weekly pain trajectories of people with knee or hip OA over up to 52-week participation in a digital self-management program. Methods Observational cohort study among participants enrolled between January 2019 and September 2021 who participated at least 4 and up to 52 weeks in the program (n = 16 274). We measured pain using Numeric Rating Scale (NRS 0–10) and applied latent class growth analysis to identify classes with similar trajectories. Associations between baseline characteristics and trajectory classes were examined using multinomial logistic regression and dominance analysis. Results We identified 4 pain trajectory classes: “mild-largely improved” (30%), “low moderate-largely improved” (34%), “upper moderate-improved” (24%), and “severe-persistent” (12%). For classes with decreasing pain, the most pain reduction occurred during first 20 weeks and was stable thereafter. Male sex, older age, lower body mass index (BMI), better physical function, lower activity impairment, less anxiety/depression, higher education, knee OA, no walking difficulties, no wish for surgery and higher physical activity, all measured at enrolment, were associated with greater probabilities of membership in “mild-largely improved” class than other classes. Dominance analysis suggested that activity impairment followed by wish for surgery and walking difficulties were the most important predictors of trajectory class membership. Conclusions Our results highlight the importance of reaching people with OA for first-line treatment prior to developing severe pain, poor health status and a wish for surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zhlili完成签到,获得积分10
1秒前
斯文败类应助ZW采纳,获得10
1秒前
陈雅玲发布了新的文献求助20
1秒前
唬旌完成签到,获得积分10
2秒前
2秒前
悦24完成签到,获得积分10
2秒前
3秒前
4秒前
merry6669发布了新的文献求助10
4秒前
hhh完成签到,获得积分20
4秒前
5秒前
无辜洋葱发布了新的文献求助10
5秒前
王老裂完成签到,获得积分10
6秒前
文小杰完成签到,获得积分10
8秒前
顺儿完成签到,获得积分10
8秒前
HEIKU应助然然采纳,获得10
8秒前
8秒前
yliu完成签到,获得积分10
8秒前
yanglinhai发布了新的文献求助10
9秒前
沉积岩完成签到,获得积分10
9秒前
传奇3应助Joy采纳,获得10
9秒前
9秒前
舒展完成签到,获得积分10
10秒前
zsy完成签到,获得积分10
10秒前
10秒前
yinqueshi发布了新的文献求助10
10秒前
高大的冰双完成签到,获得积分10
10秒前
FashionBoy应助无辜洋葱采纳,获得10
13秒前
慕青应助泯珉采纳,获得10
13秒前
13秒前
君君完成签到,获得积分10
13秒前
qin123完成签到 ,获得积分10
13秒前
Sssmmmyy发布了新的文献求助10
14秒前
15秒前
15秒前
tyy发布了新的文献求助10
15秒前
呢喃完成签到,获得积分10
15秒前
Akim应助慢慢采纳,获得10
16秒前
ZW发布了新的文献求助10
16秒前
SKSK完成签到,获得积分10
16秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733725
求助须知:如何正确求助?哪些是违规求助? 3277951
关于积分的说明 10005953
捐赠科研通 2994047
什么是DOI,文献DOI怎么找? 1642900
邀请新用户注册赠送积分活动 780710
科研通“疑难数据库(出版商)”最低求助积分说明 748968