阳极
材料科学
硅
电解质
相间
复合数
微尺度化学
锂(药物)
空隙(复合材料)
电化学
纳米技术
复合材料
电极
化学工程
冶金
化学
生物
医学
工程类
内分泌学
数学教育
物理化学
遗传学
数学
作者
Hanyu Huo,Ming Jiang,Yang Bai,Shamail Ahmed,Kerstin Volz,Hannah Hartmann,Anja Henß,Chandra Veer Singh,Dierk Raabe,Jürgen Janek
出处
期刊:Nature Materials
[Springer Nature]
日期:2024-01-26
卷期号:23 (4): 543-551
被引量:29
标识
DOI:10.1038/s41563-023-01792-x
摘要
Abstract Silicon is a promising anode material due to its high theoretical specific capacity, low lithiation potential and low lithium dendrite risk. Yet, the electrochemical performance of silicon anodes in solid-state batteries is still poor (for example, low actual specific capacity and fast capacity decay), hindering practical applications. Here the chemo-mechanical failure mechanisms of composite Si/Li 6 PS 5 Cl and solid-electrolyte-free silicon anodes are revealed by combining structural and chemical characterizations with theoretical simulations. The growth of the solid electrolyte interphase at the Si|Li 6 PS 5 Cl interface causes severe resistance increase in composite anodes, explaining their fast capacity decay. Solid-electrolyte-free silicon anodes show sufficient ionic and electronic conductivities, enabling a high specific capacity. However, microscale void formation during delithiation causes larger mechanical stress at the two-dimensional interfaces of these anodes than in composite anodes. Understanding these chemo-mechanical failure mechanisms of different anode architectures and the role of interphase formation helps to provide guidelines for the design of improved electrode materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI