Computational simulations of bispecific T cell engagers by a multiscale model

细胞内 计算机科学 CD3型 细胞 细胞毒性T细胞 免疫疗法 计算生物学 T细胞 抗体 细胞生物学 主要组织相容性复合体 化学 CD8型 生物 抗原 免疫系统 免疫学 体外 生物化学
作者
Zhaoqian Su,Steven C. Almo,Yinghao Wu
出处
期刊:Biophysical Journal [Elsevier]
卷期号:123 (2): 235-247 被引量:2
标识
DOI:10.1016/j.bpj.2023.12.012
摘要

The use of bispecific antibodies as T cell engagers can bypass the normal T cell receptor-major histocompatibility class interaction, redirect the cytotoxic activity of T cells, and lead to highly efficient tumor cell killing. However, this immunotherapy also causes significant on-target off-tumor toxicologic effects, especially when it is used to treat solid tumors. To avoid these adverse events, it is necessary to understand the fundamental mechanisms involved in the physical process of T cell engagement. We developed a multiscale computational framework to reach this goal. The framework combines simulations on the intercellular and multicellular levels. On the intercellular level, we simulated the spatial-temporal dynamics of three-body interactions among bispecific antibodies, CD3 and tumor-associated antigens (TAAs). The derived number of intercellular bonds formed between CD3 and TAAs was further transferred to the multicellular simulations as the input parameter of adhesive density between cells. Through the simulations under various molecular and cellular conditions, we were able to gain new insights into how to adopt the most appropriate strategy to maximize the drug efficacy and avoid the off-target effect. For instance, we discovered that the low antibody-binding affinity resulted in the formation of large clusters at the cell-cell interface, which could be important to control the downstream signaling pathways. We also tested different molecular architectures of the bispecific antibody and suggested the existence of an optimal length in regulating the T cell engagement. Overall, the current multiscale simulations serve as a proof-of-concept study to help in the future design of new biological therapeutics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
所所应助LQ采纳,获得10
2秒前
5秒前
6秒前
等待丹秋完成签到,获得积分10
7秒前
清爽雪碧完成签到 ,获得积分10
7秒前
8秒前
10秒前
良辰应助sobergod采纳,获得10
10秒前
wlh256完成签到,获得积分20
11秒前
11秒前
hj123完成签到,获得积分10
12秒前
wlh256发布了新的文献求助10
13秒前
饼子发布了新的文献求助10
13秒前
aaron完成签到,获得积分10
13秒前
李健的小迷弟应助通研科采纳,获得10
14秒前
官尔完成签到 ,获得积分10
16秒前
李健应助mary611采纳,获得10
17秒前
好困应助凌成败采纳,获得10
17秒前
Adi完成签到,获得积分10
18秒前
俭朴的猫咪完成签到,获得积分10
18秒前
lili完成签到 ,获得积分10
19秒前
天天快乐应助六点一横采纳,获得10
21秒前
烂漫奇异果完成签到 ,获得积分20
21秒前
无辜哑铃发布了新的文献求助10
24秒前
yuzu完成签到,获得积分10
26秒前
26秒前
bluesmile完成签到,获得积分10
28秒前
TT完成签到,获得积分10
29秒前
纯真电源发布了新的文献求助10
29秒前
哎嘿应助可靠的寒风采纳,获得10
32秒前
英姑应助李昕123采纳,获得10
32秒前
33秒前
34秒前
ygr应助科研通管家采纳,获得30
34秒前
完美世界应助科研通管家采纳,获得10
34秒前
隐形曼青应助科研通管家采纳,获得10
34秒前
CodeCraft应助科研通管家采纳,获得10
34秒前
烟花应助科研通管家采纳,获得10
34秒前
默默向雪完成签到,获得积分10
34秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151970
求助须知:如何正确求助?哪些是违规求助? 2803266
关于积分的说明 7852878
捐赠科研通 2460679
什么是DOI,文献DOI怎么找? 1309983
科研通“疑难数据库(出版商)”最低求助积分说明 629087
版权声明 601760