Scaling Limits of Memristor-Based Routers for Asynchronous Neuromorphic Systems

神经形态工程学 记忆电阻器 异步通信 缩放比例 计算机科学 计算机体系结构 人工神经网络 人工智能 计算机网络 电子工程 工程类 数学 几何学
作者
Jun-Ren Chen,Siyao Yang,Huaqiang Wu,Giacomo Indiveri,Melika Payvand
出处
期刊:IEEE Transactions on Circuits and Systems Ii-express Briefs [Institute of Electrical and Electronics Engineers]
卷期号:71 (3): 1576-1580 被引量:4
标识
DOI:10.1109/tcsii.2023.3343292
摘要

Multi-core neuromorphic systems typically use onchip routers to transmit spikes among cores.These routers require significant memory resources and consume a large part of the overall system's energy budget.A promising alternative approach to using standard CMOS and SRAM-based routers is to exploit the features of memristive crossbar arrays and use them as programmable switch-matrices that route spikes.However, the scaling of these crossbar arrays presents physical challenges, such as "IR drop" on the metal lines due to the parasitic resistance, and leakage current accumulation on multiple active memristors in their "off" state.While reliability challenges of this type have been extensively studied in synchronous systems for compute-inmemory matrix-vector multiplication (MVM) accelerators and storage class memory, little effort has been devoted so far to characterizing the scaling limits of memristor-based crossbar routers.Here, we study the challenges of memristive crossbar arrays, when used as routing channels to transmit spikes in asynchronous Spiking Neural Network (SNN) hardware.We validate our analytical findings with experimental results obtained from a 4K-ReRAM chip which demonstrates its functionality as a routing crossbar.We determine the functionality bounds on the routing due to the IR drop and leak problem, based on theoretical modeling, circuit simulations for a 22 nm FDSOI technology, and experimental measurements.This work highlights the limitations of this approach and provides useful guidelines for engineering the memristor device properties in memristive crossbar routers for multi-core asynchronous neuromorphic systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TBHP完成签到,获得积分10
1秒前
我是老大应助縠纹平采纳,获得10
1秒前
Jasper应助zzznznnn采纳,获得10
2秒前
DING完成签到,获得积分10
2秒前
2秒前
2秒前
福福yu发布了新的文献求助10
2秒前
3秒前
4秒前
5秒前
量子星尘发布了新的文献求助150
5秒前
lzd完成签到,获得积分10
6秒前
6秒前
7秒前
8秒前
8秒前
8秒前
Owen应助顺其自然采纳,获得10
9秒前
9秒前
不安的饼干完成签到,获得积分10
9秒前
目光所致发布了新的文献求助10
9秒前
9秒前
科目三应助小蜗牛采纳,获得10
10秒前
10秒前
叮叮当当发布了新的文献求助10
11秒前
kysl完成签到,获得积分10
11秒前
ao发布了新的文献求助10
11秒前
黄柒柒发布了新的文献求助10
11秒前
彭于晏应助啊这采纳,获得10
11秒前
chhe发布了新的文献求助10
11秒前
欣欣关注了科研通微信公众号
12秒前
13秒前
xxd发布了新的文献求助10
13秒前
13秒前
山与应助Panini采纳,获得50
14秒前
ding应助研友_LwbeX8采纳,获得10
15秒前
恋恋不舍得完成签到,获得积分10
15秒前
Hh发布了新的文献求助10
15秒前
qzLi完成签到,获得积分10
16秒前
卷卷发布了新的文献求助30
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5075105
求助须知:如何正确求助?哪些是违规求助? 4294947
关于积分的说明 13383012
捐赠科研通 4116702
什么是DOI,文献DOI怎么找? 2254423
邀请新用户注册赠送积分活动 1258996
关于科研通互助平台的介绍 1191861