A lightweight spatiotemporal graph dilated convolutional network for urban sensor state prediction

计算机科学 卷积(计算机科学) 图形 数据挖掘 人工智能 机器学习 深度学习 比例(比率) 理论计算机科学 人工神经网络 物理 量子力学
作者
Peixiao Wang,Hengcai Zhang,Shifen Cheng,Tong Zhang,Feng Lu,Sheng Wu
出处
期刊:Sustainable Cities and Society [Elsevier BV]
卷期号:101: 105105-105105
标识
DOI:10.1016/j.scs.2023.105105
摘要

Spatiotemporal prediction is one attractive research topic in urban computing, which is of great significance to urban planning and management. At present, there are many attempts to predict the spatiotemporal state of systems using various deep learning models. However, most existing models tend to improve prediction accuracy with larger parameter scale and time consumption, but ignoring ease of use in practice. To overcome this question, we propose a lightweight spatiotemporal graph dilated convolutional network called STGDN with satisfactory prediction accuracy and lower model complexity. More specifically, we propose a novel dilated convolution operator and integrate it into traditional causal convolutional networks and graph convolutional networks to greatly improve the efficiency of prediction. The proposed dilated convolution operator can significantly reduce the depth of the model, thereby reducing the parameter scale and improving the computational efficiency of the model. We conducted on multi experiments on three real-world spatiotemporal datasets (traffic dataset, PM2.5 dataset, and temperature dataset) to prove the effectiveness and advantage of our proposed STGDN. The experimental results show that the proposed STGDN model outperforms or achieves comparable prediction accuracy of the existing nine baselines with higher operational efficiency and fewer model parameters. Codes are available at anonymous private link on https://doi.org/10.6084/m9.figshare.23935683.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yang完成签到,获得积分10
2秒前
白蓝发布了新的文献求助10
2秒前
3秒前
3秒前
5秒前
包凡之完成签到,获得积分10
5秒前
Orange应助嘴巴张大一点采纳,获得10
7秒前
yang发布了新的文献求助10
8秒前
8秒前
白蓝完成签到,获得积分10
11秒前
11秒前
深情安青应助苏苏采纳,获得10
15秒前
乾清宫喝奶茶完成签到,获得积分10
18秒前
充电宝应助cxt采纳,获得10
19秒前
yhgz完成签到,获得积分10
19秒前
yy完成签到,获得积分10
19秒前
20秒前
wg言完成签到,获得积分10
20秒前
21秒前
Jiayi完成签到 ,获得积分10
21秒前
22秒前
mulberry完成签到,获得积分10
23秒前
清新的绿海完成签到,获得积分10
25秒前
25秒前
26秒前
桐桐应助lzx采纳,获得10
27秒前
今后应助Clr采纳,获得30
28秒前
28秒前
28秒前
29秒前
简单千秋发布了新的文献求助10
30秒前
感动问枫发布了新的文献求助30
31秒前
XHH1994发布了新的文献求助10
32秒前
lsn发布了新的文献求助10
33秒前
简单千秋完成签到 ,获得积分10
34秒前
35秒前
36秒前
TAOS完成签到 ,获得积分10
37秒前
XHH1994完成签到,获得积分10
38秒前
41秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959179
求助须知:如何正确求助?哪些是违规求助? 3505472
关于积分的说明 11124101
捐赠科研通 3237190
什么是DOI,文献DOI怎么找? 1789003
邀请新用户注册赠送积分活动 871507
科研通“疑难数据库(出版商)”最低求助积分说明 802824