A lightweight spatiotemporal graph dilated convolutional network for urban sensor state prediction

计算机科学 卷积(计算机科学) 图形 数据挖掘 人工智能 机器学习 深度学习 比例(比率) 理论计算机科学 人工神经网络 物理 量子力学
作者
Peixiao Wang,Hengcai Zhang,Shifen Cheng,Tong Zhang,Feng Lu,Sheng Wu
出处
期刊:Sustainable Cities and Society [Elsevier]
卷期号:101: 105105-105105
标识
DOI:10.1016/j.scs.2023.105105
摘要

Spatiotemporal prediction is one attractive research topic in urban computing, which is of great significance to urban planning and management. At present, there are many attempts to predict the spatiotemporal state of systems using various deep learning models. However, most existing models tend to improve prediction accuracy with larger parameter scale and time consumption, but ignoring ease of use in practice. To overcome this question, we propose a lightweight spatiotemporal graph dilated convolutional network called STGDN with satisfactory prediction accuracy and lower model complexity. More specifically, we propose a novel dilated convolution operator and integrate it into traditional causal convolutional networks and graph convolutional networks to greatly improve the efficiency of prediction. The proposed dilated convolution operator can significantly reduce the depth of the model, thereby reducing the parameter scale and improving the computational efficiency of the model. We conducted on multi experiments on three real-world spatiotemporal datasets (traffic dataset, PM2.5 dataset, and temperature dataset) to prove the effectiveness and advantage of our proposed STGDN. The experimental results show that the proposed STGDN model outperforms or achieves comparable prediction accuracy of the existing nine baselines with higher operational efficiency and fewer model parameters. Codes are available at anonymous private link on https://doi.org/10.6084/m9.figshare.23935683.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyds完成签到,获得积分0
2秒前
2秒前
诚诚不差事完成签到,获得积分10
3秒前
丘比特应助直率翠绿采纳,获得10
4秒前
完美世界应助官官采纳,获得10
4秒前
6秒前
7秒前
8秒前
科研通AI2S应助番茄大王采纳,获得10
9秒前
10秒前
小青椒应助眯眯眼的代容采纳,获得30
11秒前
初夏发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
xaaowang发布了新的文献求助10
15秒前
追随光的沙完成签到,获得积分10
17秒前
生动的丝应助77采纳,获得10
18秒前
可了不得完成签到 ,获得积分10
19秒前
Meteor完成签到 ,获得积分10
19秒前
科研通AI6应助djx123采纳,获得10
19秒前
木子小样发布了新的文献求助10
20秒前
英姑应助科研通管家采纳,获得10
20秒前
852应助科研通管家采纳,获得10
20秒前
李健应助科研通管家采纳,获得10
20秒前
852应助科研通管家采纳,获得10
21秒前
21秒前
事上炼应助科研通管家采纳,获得10
21秒前
天天快乐应助科研通管家采纳,获得10
21秒前
科目三应助科研通管家采纳,获得10
21秒前
浮游应助科研通管家采纳,获得10
21秒前
ccm应助科研通管家采纳,获得10
21秒前
ccm应助科研通管家采纳,获得10
21秒前
脑洞疼应助科研通管家采纳,获得10
21秒前
Ava应助科研通管家采纳,获得10
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
一叶知秋应助科研通管家采纳,获得10
21秒前
23秒前
NexusExplorer应助xaaowang采纳,获得10
25秒前
FIN发布了新的文献求助400
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288121
求助须知:如何正确求助?哪些是违规求助? 4440061
关于积分的说明 13823852
捐赠科研通 4322320
什么是DOI,文献DOI怎么找? 2372504
邀请新用户注册赠送积分活动 1367975
关于科研通互助平台的介绍 1331592