清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A lightweight spatiotemporal graph dilated convolutional network for urban sensor state prediction

计算机科学 卷积(计算机科学) 图形 数据挖掘 人工智能 机器学习 深度学习 比例(比率) 理论计算机科学 人工神经网络 物理 量子力学
作者
Peixiao Wang,Hengcai Zhang,Shifen Cheng,Tong Zhang,Feng Lu,Sheng Wu
出处
期刊:Sustainable Cities and Society [Elsevier]
卷期号:101: 105105-105105
标识
DOI:10.1016/j.scs.2023.105105
摘要

Spatiotemporal prediction is one attractive research topic in urban computing, which is of great significance to urban planning and management. At present, there are many attempts to predict the spatiotemporal state of systems using various deep learning models. However, most existing models tend to improve prediction accuracy with larger parameter scale and time consumption, but ignoring ease of use in practice. To overcome this question, we propose a lightweight spatiotemporal graph dilated convolutional network called STGDN with satisfactory prediction accuracy and lower model complexity. More specifically, we propose a novel dilated convolution operator and integrate it into traditional causal convolutional networks and graph convolutional networks to greatly improve the efficiency of prediction. The proposed dilated convolution operator can significantly reduce the depth of the model, thereby reducing the parameter scale and improving the computational efficiency of the model. We conducted on multi experiments on three real-world spatiotemporal datasets (traffic dataset, PM2.5 dataset, and temperature dataset) to prove the effectiveness and advantage of our proposed STGDN. The experimental results show that the proposed STGDN model outperforms or achieves comparable prediction accuracy of the existing nine baselines with higher operational efficiency and fewer model parameters. Codes are available at anonymous private link on https://doi.org/10.6084/m9.figshare.23935683.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Chen完成签到 ,获得积分10
21秒前
21秒前
34秒前
貔貅完成签到 ,获得积分10
37秒前
37秒前
文章多多发布了新的文献求助10
37秒前
两个榴莲完成签到,获得积分0
40秒前
50秒前
xingzai101完成签到,获得积分10
58秒前
1分钟前
诺亚方舟哇哈哈完成签到 ,获得积分0
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
天天快乐应助坚定的剑心采纳,获得10
1分钟前
1分钟前
小蘑菇应助科研通管家采纳,获得10
2分钟前
doublenine18发布了新的文献求助50
2分钟前
2分钟前
2分钟前
斯文败类应助顾灵毓采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
顾灵毓发布了新的文献求助10
2分钟前
可爱的函函应助顾灵毓采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
顾灵毓发布了新的文献求助10
3分钟前
脑洞疼应助科研通管家采纳,获得10
4分钟前
李健应助顾灵毓采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639753
求助须知:如何正确求助?哪些是违规求助? 4750316
关于积分的说明 15007305
捐赠科研通 4797968
什么是DOI,文献DOI怎么找? 2564061
邀请新用户注册赠送积分活动 1522938
关于科研通互助平台的介绍 1482591