A lightweight spatiotemporal graph dilated convolutional network for urban sensor state prediction

计算机科学 卷积(计算机科学) 图形 数据挖掘 人工智能 机器学习 深度学习 比例(比率) 理论计算机科学 人工神经网络 物理 量子力学
作者
Peixiao Wang,Hengcai Zhang,Shifen Cheng,Tong Zhang,Feng Lu,Sheng Wu
出处
期刊:Sustainable Cities and Society [Elsevier]
卷期号:101: 105105-105105
标识
DOI:10.1016/j.scs.2023.105105
摘要

Spatiotemporal prediction is one attractive research topic in urban computing, which is of great significance to urban planning and management. At present, there are many attempts to predict the spatiotemporal state of systems using various deep learning models. However, most existing models tend to improve prediction accuracy with larger parameter scale and time consumption, but ignoring ease of use in practice. To overcome this question, we propose a lightweight spatiotemporal graph dilated convolutional network called STGDN with satisfactory prediction accuracy and lower model complexity. More specifically, we propose a novel dilated convolution operator and integrate it into traditional causal convolutional networks and graph convolutional networks to greatly improve the efficiency of prediction. The proposed dilated convolution operator can significantly reduce the depth of the model, thereby reducing the parameter scale and improving the computational efficiency of the model. We conducted on multi experiments on three real-world spatiotemporal datasets (traffic dataset, PM2.5 dataset, and temperature dataset) to prove the effectiveness and advantage of our proposed STGDN. The experimental results show that the proposed STGDN model outperforms or achieves comparable prediction accuracy of the existing nine baselines with higher operational efficiency and fewer model parameters. Codes are available at anonymous private link on https://doi.org/10.6084/m9.figshare.23935683.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
刚刚
机灵的雨文完成签到,获得积分10
刚刚
共享精神应助大力不弱采纳,获得10
1秒前
lixiao完成签到,获得积分10
2秒前
2秒前
4秒前
4秒前
5秒前
红糖发糕发布了新的文献求助10
5秒前
6秒前
7秒前
代茜蕾完成签到,获得积分10
8秒前
852应助lucky采纳,获得10
9秒前
BowieHuang驳回了tt应助
10秒前
NexusExplorer应助tcheng采纳,获得10
11秒前
HAOS发布了新的文献求助10
11秒前
路人甲完成签到,获得积分10
11秒前
纯真的志泽完成签到 ,获得积分10
11秒前
Lingmei发布了新的文献求助10
12秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
双人余发布了新的文献求助10
14秒前
景行行止完成签到 ,获得积分10
15秒前
Owen应助zzk采纳,获得10
16秒前
我想当太空人完成签到,获得积分10
17秒前
18秒前
顾矜应助emeqwq采纳,获得10
18秒前
away发布了新的文献求助10
18秒前
FrozNineTivus完成签到,获得积分10
19秒前
19秒前
19秒前
20秒前
合适忆枫完成签到 ,获得积分10
20秒前
Yingqian_Zhang完成签到 ,获得积分10
22秒前
zy完成签到,获得积分10
24秒前
tcheng发布了新的文献求助10
24秒前
24秒前
穆梦山完成签到,获得积分10
25秒前
于于发布了新的文献求助10
25秒前
sapphire完成签到 ,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618333
求助须知:如何正确求助?哪些是违规求助? 4703175
关于积分的说明 14921639
捐赠科研通 4757117
什么是DOI,文献DOI怎么找? 2550058
邀请新用户注册赠送积分活动 1512894
关于科研通互助平台的介绍 1474290