The history and future of population pharmacokinetic analysis in drug development

药物开发 药代动力学 药品 人口 群体药代动力学 药理学 医学 环境卫生
作者
Nathan Teuscher
出处
期刊:Xenobiotica [Informa]
卷期号:54 (7): 394-400 被引量:2
标识
DOI:10.1080/00498254.2023.2291792
摘要

The analysis of pharmacokinetic data has been in a constant state of evolution since the introduction of the term pharmacokinetics. Early work focused on mechanistic understanding of the absorption, distribution, metabolism and excretion of drug products.The introduction of non-linear mixed effects models to perform population pharmacokinetic analysis initiated a paradigm shift. The application of these models represented a major shift in evaluating variability in pharmacokinetic parameters across a population of subjects.While technological advancements in computing power have fueled the growth of population pharmacokinetics in drug development efforts, there remain many challenges in reducing the time required to incorporate these learnings into a model-informed development process. These challenges exist because of expanding datasets, increased number of diagnostics, and more complex mathematical models.New machine learning tools may be potential solutions for these challenges. These new methodologies include genetic algorithms for model selection, machine learning algorithms for covariate selection, and deep learning models for pharmacokinetic and pharmacodynamic data. These new methods promise the potential for less bias, faster analysis times, and the ability to integrate more data.While questions remain regarding the ability of these models to extrapolate accurately, continued research in this area is expected to address these questions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助JY采纳,获得10
刚刚
GGS完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
3秒前
3秒前
Duan完成签到,获得积分10
4秒前
cara应助adobe采纳,获得30
5秒前
Jasper应助zhxhh采纳,获得10
5秒前
Reginannnn发布了新的文献求助10
6秒前
我wwww发布了新的文献求助10
6秒前
6秒前
yao完成签到,获得积分10
6秒前
吾皇完成签到 ,获得积分10
8秒前
lulutxbb发布了新的文献求助10
8秒前
1030hyf发布了新的文献求助10
9秒前
9秒前
Reginannnn完成签到,获得积分10
10秒前
凑个数完成签到 ,获得积分10
10秒前
11秒前
JY发布了新的文献求助10
11秒前
FAY发布了新的文献求助10
12秒前
cc完成签到 ,获得积分20
12秒前
14秒前
14秒前
15秒前
Maestro发布了新的文献求助10
16秒前
李爱国应助絮甯采纳,获得10
16秒前
pluto应助lanrangg采纳,获得10
16秒前
大个应助愿绘重来一世采纳,获得10
17秒前
19秒前
执着易形完成签到 ,获得积分10
19秒前
内向书雁完成签到,获得积分10
19秒前
19秒前
持之以恒完成签到,获得积分10
20秒前
zzll0301完成签到,获得积分10
20秒前
852应助Fine采纳,获得10
21秒前
隐形曼青应助叶子采纳,获得10
21秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3264696
求助须知:如何正确求助?哪些是违规求助? 2904692
关于积分的说明 8331249
捐赠科研通 2575017
什么是DOI,文献DOI怎么找? 1399626
科研通“疑难数据库(出版商)”最低求助积分说明 654521
邀请新用户注册赠送积分活动 633221