The history and future of population pharmacokinetic analysis in drug development

药物开发 药代动力学 药品 人口 群体药代动力学 药理学 医学 环境卫生
作者
Nathan S. Teuscher
出处
期刊:Xenobiotica [Informa]
卷期号:54 (7): 394-400 被引量:4
标识
DOI:10.1080/00498254.2023.2291792
摘要

The analysis of pharmacokinetic data has been in a constant state of evolution since the introduction of the term pharmacokinetics. Early work focused on mechanistic understanding of the absorption, distribution, metabolism and excretion of drug products.The introduction of non-linear mixed effects models to perform population pharmacokinetic analysis initiated a paradigm shift. The application of these models represented a major shift in evaluating variability in pharmacokinetic parameters across a population of subjects.While technological advancements in computing power have fueled the growth of population pharmacokinetics in drug development efforts, there remain many challenges in reducing the time required to incorporate these learnings into a model-informed development process. These challenges exist because of expanding datasets, increased number of diagnostics, and more complex mathematical models.New machine learning tools may be potential solutions for these challenges. These new methodologies include genetic algorithms for model selection, machine learning algorithms for covariate selection, and deep learning models for pharmacokinetic and pharmacodynamic data. These new methods promise the potential for less bias, faster analysis times, and the ability to integrate more data.While questions remain regarding the ability of these models to extrapolate accurately, continued research in this area is expected to address these questions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ataybabdallah发布了新的文献求助30
1秒前
1秒前
难过笑寒发布了新的文献求助10
2秒前
整箱完成签到 ,获得积分10
3秒前
4秒前
4秒前
5秒前
聪慧的鹤轩完成签到,获得积分10
6秒前
Lucky完成签到,获得积分10
8秒前
8秒前
iiiid完成签到,获得积分10
8秒前
8秒前
鸽子发布了新的文献求助10
9秒前
无语的成仁完成签到,获得积分10
9秒前
10秒前
10秒前
小马发布了新的文献求助10
11秒前
小葱头发布了新的文献求助50
11秒前
JMD完成签到,获得积分20
13秒前
科研通AI2S应助left_right采纳,获得10
13秒前
星辰大海应助shinble采纳,获得30
13秒前
Owen应助迪迦奥特曼采纳,获得10
14秒前
所所应助prew采纳,获得10
15秒前
15秒前
传奇3应助科研通管家采纳,获得10
15秒前
ccm应助科研通管家采纳,获得10
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
shhoing应助科研通管家采纳,获得10
15秒前
shhoing应助科研通管家采纳,获得10
15秒前
大模型应助科研通管家采纳,获得10
15秒前
ding应助科研通管家采纳,获得10
16秒前
小二郎应助科研通管家采纳,获得10
16秒前
FashionBoy应助科研通管家采纳,获得10
16秒前
Owen应助科研通管家采纳,获得10
16秒前
隐形曼青应助科研通管家采纳,获得10
16秒前
今后应助科研通管家采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
桐桐应助科研通管家采纳,获得10
16秒前
CipherSage应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537074
求助须知:如何正确求助?哪些是违规求助? 4624638
关于积分的说明 14592736
捐赠科研通 4565155
什么是DOI,文献DOI怎么找? 2502201
邀请新用户注册赠送积分活动 1480908
关于科研通互助平台的介绍 1452098