A behavior prediction method for complex system based on belief rule base with structural adaptive

计算机科学 数据挖掘 机器学习 过程(计算) 随机性 知识库 专家系统 集合(抽象数据类型) 决策支持系统 人工智能 数学 统计 操作系统 程序设计语言
作者
Qingxi Zhang,BoYing Zhao,Wei He,Hailong Zhu,Guohui Zhou
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:151: 111118-111118 被引量:2
标识
DOI:10.1016/j.asoc.2023.111118
摘要

Predicting the behavior of complex systems and taking appropriate measures for system management is of paramount importance for decision-makers. Belief rule base (BRB) is an effective method for modeling complex systems, and its construction relies on expert knowledge. However, in certain complex system prediction problems, deriving the structure and parameters of BRB from limited expert knowledge or existing models is a challenge, and there may even be a lack of available expert knowledge. Data mining plays a crucial role in obtaining the parameters for model construction in the design of decision support systems (DSSs). Therefore, this paper proposes a method for behavior prediction of complex systems called the structural adaptive BRB (SA-BRB). First, to reduce the randomness of K-means+ +, this paper introduces an error constraint and employs this algorithm to mine historical data for constructing a reference value set. Second, a model ensemble construction process is designed to create different model structures. Subsequently, the evidence reasoning (ER) algorithm is applied to derive the models, and the projection covariance matrix adaptive evolution strategy (P-CMA-ES) algorithm is used for model optimization. Finally, a model evaluation method is established, allowing adaptive adjustment of the model structure according to the needs of engineering practice and the preferences of decision-makers. Furthermore, the effectiveness of the proposed method is validated through two case studies: one focusing on predicting the health status of a flywheel system and the other on forecasting full-load power generation in a combined power plant.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
博博大佬完成签到 ,获得积分10
2秒前
英俊的铭应助runtang采纳,获得10
3秒前
剑指东方是为谁应助任康采纳,获得10
3秒前
SOL应助任康采纳,获得10
3秒前
硝基发布了新的文献求助10
4秒前
巧蕊完成签到,获得积分20
4秒前
qq完成签到,获得积分10
5秒前
wasiwan完成签到,获得积分10
5秒前
啦啦啦啦啦完成签到,获得积分10
6秒前
Hollen完成签到 ,获得积分10
7秒前
bk2020113458完成签到,获得积分10
8秒前
勿忘心安应助朴素剑心采纳,获得10
9秒前
搞怪的易槐完成签到,获得积分10
10秒前
10秒前
bitter完成签到,获得积分10
11秒前
乐乐应助turbo采纳,获得10
13秒前
科研通AI5应助王静采纳,获得10
14秒前
任康完成签到,获得积分20
14秒前
zyj完成签到 ,获得积分10
15秒前
打打应助科研通管家采纳,获得20
15秒前
15秒前
FashionBoy应助科研通管家采纳,获得10
15秒前
无花果应助科研通管家采纳,获得10
15秒前
李爱国应助科研通管家采纳,获得10
15秒前
丘比特应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
duoduo完成签到,获得积分10
16秒前
今后应助科研通管家采纳,获得10
16秒前
bkagyin应助科研通管家采纳,获得10
16秒前
打打应助科研通管家采纳,获得10
17秒前
臭小子完成签到,获得积分10
17秒前
18秒前
打打应助硝基采纳,获得10
18秒前
wanli完成签到,获得积分10
18秒前
18秒前
22秒前
科研通AI5应助臭小子采纳,获得30
23秒前
24秒前
24秒前
Zzzzan发布了新的文献求助30
24秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737471
求助须知:如何正确求助?哪些是违规求助? 3281236
关于积分的说明 10023845
捐赠科研通 2997978
什么是DOI,文献DOI怎么找? 1644888
邀请新用户注册赠送积分活动 782418
科研通“疑难数据库(出版商)”最低求助积分说明 749782