Effect of electric field on separation characteristics of oil–water–solid three phases separating device

电场 材料科学 机械 脱水 粒子(生态学) 电压 分离过程 混合(物理) 化学 色谱法 电气工程 工程类 物理 岩土工程 地质学 海洋学 量子力学
作者
Peng Ye,H.W. Zhang,Yu Bao,Chen Huo,Hong Yin,Haifeng Gong
出处
期刊:Chemical Engineering Research & Design [Elsevier]
卷期号:183: 138-151 被引量:2
标识
DOI:10.1016/j.psep.2023.12.059
摘要

Lubricating oil can decay as a result of the mixing of water with solid impurities in the working process, and this process can adversely affect the performance of the machinery. Therefore, desolidification and dewatering are key steps in overall oil purification. In general, a basic swirl device cannot sustain efficient dewatering and desolidification. Thus, a three-phase separating device enhanced by an electric field has been proposed. To study the performance of the oil-water-solid separation process, a numerical model of the device was conceived based on combining the governing equations of the flow field and the electric field with the particle-tracking equation giving due consideration to the population balance model. The tangential velocity and the distribution of solid particles at various voltage amplitudes were analyzed, and the effect of the electric field on the oil, water and particle separation process was studied. The results show that at 3 kV, the tangential velocity increased by 5.06%, compared with that at 12 kV. Application of an electric field to the device was found to accelerate more solid particles which assembled near the wall of the device, and where the number of the particles near the axial plane decreased. The maximum particle concentration near the wall at the z = 630 mm plane is 20.24%. Moreover, the average residence time of the solid particles initially exhibited an increasing and then a decreasing trend. Additionally, the increase in the droplet size and enhancement of the oil-water separation process are promoted through the action of the electric field. The rate for desolidification, deoiling and dewatering at 3 kV are 93.60%, 93.30% and 95.59%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助咕噜仔采纳,获得10
刚刚
季宇完成签到,获得积分10
1秒前
1秒前
科研通AI2S应助大脸妹采纳,获得10
1秒前
AA发布了新的文献求助10
2秒前
2秒前
2秒前
小二郎应助小喵采纳,获得10
3秒前
3秒前
stt发布了新的文献求助10
3秒前
4秒前
Oak完成签到 ,获得积分10
4秒前
4秒前
lyy完成签到 ,获得积分10
4秒前
5秒前
Anne应助fancy采纳,获得10
5秒前
5秒前
研友_汪老头完成签到,获得积分10
5秒前
雪花君完成签到,获得积分10
6秒前
派大星发布了新的文献求助10
6秒前
科研通AI5应助hzauchen采纳,获得10
6秒前
八九完成签到,获得积分10
7秒前
快乐小白菜应助圈圈采纳,获得10
7秒前
8秒前
冷艳后妈发布了新的文献求助10
8秒前
蒋念寒发布了新的文献求助10
8秒前
36456657应助CC采纳,获得10
8秒前
猪猪猪发布了新的文献求助10
8秒前
8秒前
scxl2000完成签到,获得积分10
9秒前
9秒前
oyc完成签到,获得积分10
9秒前
9秒前
9秒前
Leexxxhaoo发布了新的文献求助10
10秒前
FFFFFFF完成签到,获得积分10
10秒前
10秒前
LIU发布了新的文献求助10
10秒前
小二郎应助医路有你采纳,获得10
10秒前
研友_VZG7GZ应助卡顿公开采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678