A Meta-reinforcement Learning based Hyperspectral Image Classification with Small Sample Set

计算机科学 强化学习 高光谱成像 人工智能 机器学习 元学习(计算机科学) 推论 任务(项目管理) 样品(材料) 模式识别(心理学) 特征(语言学) 哲学 色谱法 经济 化学 管理 语言学
作者
Prince Yaw Owusu Amoako,Guo Cao,Di Yang,Lord Amoah,Yuexuan Wang,Qiqiong Yu
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 3091-3107 被引量:1
标识
DOI:10.1109/jstars.2023.3347879
摘要

The fine spectral information contained in hyperspectral images (HSI) is combined with rich spatial features to provide feature qualities that serve as distinguishing variables for efficient classification performance. The task's objective is to correctly identify and categorize several object categories in the HSI, such as the ground, flora, water, and buildings, based on their spectral characteristics beneficial for a variety of applications, including mapping minerals, analyzing vegetation, and mapping urban land-use. The difficulty of learning new task-specific knowledge from a limited data sample that encourages less training has not been overcome by deep learning models. The capacity of current models to generalize to new tasks on small data sets is still lacking. By learning features that are transferable to facilitate adaptation to novel tasks on small samples, meta-reinforcement learning shows promise in overcoming such difficulties. We proposed a meta-reinforcement learning (Meta-RL) model that decouples task inference to improve meta-training, and accelerate meta-learning with small HSI labeled samples for efficient classification. The model employs a Capsule network for effective cooperation between spectra-spatial bands. To minimize the temporal difference error, the Apex-X Deep Q network parameter update is used to meta-train our model. The proposed model obtains an overall accuracy between 95.85% and 96.78% with computational time between 3207.9s and 7487.9s for training and validation as well as between 21.57s and 32.98s for testing. The experimental results prove the competitiveness of the proposed model to existing traditional deep learning, meta-learning, and reinforcement learning methods in both classification accuracy and computational cost.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰完成签到,获得积分10
1秒前
申木发布了新的文献求助30
1秒前
布丁完成签到,获得积分10
1秒前
man完成签到 ,获得积分10
1秒前
yolo完成签到,获得积分20
2秒前
南霖完成签到,获得积分10
2秒前
乌龟gogogo完成签到 ,获得积分10
2秒前
李健的小迷弟应助压强采纳,获得10
3秒前
劲秉应助时光采纳,获得10
3秒前
3秒前
3秒前
香蕉觅云应助HOO采纳,获得10
3秒前
4秒前
烟花应助juzipi采纳,获得10
5秒前
ZLPY发布了新的文献求助10
5秒前
5秒前
杨柳完成签到,获得积分10
6秒前
6秒前
xiamu发布了新的文献求助10
7秒前
哇咔咔应助温暖天与采纳,获得10
7秒前
theshyshy发布了新的文献求助10
8秒前
9秒前
melo完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
12秒前
Boston发布了新的文献求助10
12秒前
哦吼发布了新的文献求助10
12秒前
13秒前
研友_VZG7GZ应助wangxin采纳,获得10
14秒前
科目三应助英俊迎波采纳,获得30
15秒前
15秒前
忧伤的小懒猪完成签到,获得积分10
16秒前
16秒前
去看海嘛发布了新的文献求助10
17秒前
阿辉发布了新的文献求助10
17秒前
我不知道a发布了新的文献求助10
17秒前
善良元正发布了新的文献求助30
17秒前
kokoko完成签到,获得积分10
19秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3259260
求助须知:如何正确求助?哪些是违规求助? 2900994
关于积分的说明 8313192
捐赠科研通 2570268
什么是DOI,文献DOI怎么找? 1396371
科研通“疑难数据库(出版商)”最低求助积分说明 653468
邀请新用户注册赠送积分活动 631476