亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Meta-reinforcement Learning based Hyperspectral Image Classification with Small Sample Set

计算机科学 强化学习 高光谱成像 人工智能 机器学习 元学习(计算机科学) 推论 任务(项目管理) 样品(材料) 模式识别(心理学) 特征(语言学) 语言学 化学 哲学 管理 色谱法 经济
作者
Prince Yaw Owusu Amoako,Guo Cao,Di Yang,Lord Amoah,Yuexuan Wang,Qiqiong Yu
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 3091-3107 被引量:1
标识
DOI:10.1109/jstars.2023.3347879
摘要

The fine spectral information contained in hyperspectral images (HSI) is combined with rich spatial features to provide feature qualities that serve as distinguishing variables for efficient classification performance. The task's objective is to correctly identify and categorize several object categories in the HSI, such as the ground, flora, water, and buildings, based on their spectral characteristics beneficial for a variety of applications, including mapping minerals, analyzing vegetation, and mapping urban land-use. The difficulty of learning new task-specific knowledge from a limited data sample that encourages less training has not been overcome by deep learning models. The capacity of current models to generalize to new tasks on small data sets is still lacking. By learning features that are transferable to facilitate adaptation to novel tasks on small samples, meta-reinforcement learning shows promise in overcoming such difficulties. We proposed a meta-reinforcement learning (Meta-RL) model that decouples task inference to improve meta-training, and accelerate meta-learning with small HSI labeled samples for efficient classification. The model employs a Capsule network for effective cooperation between spectra-spatial bands. To minimize the temporal difference error, the Apex-X Deep Q network parameter update is used to meta-train our model. The proposed model obtains an overall accuracy between 95.85% and 96.78% with computational time between 3207.9s and 7487.9s for training and validation as well as between 21.57s and 32.98s for testing. The experimental results prove the competitiveness of the proposed model to existing traditional deep learning, meta-learning, and reinforcement learning methods in both classification accuracy and computational cost.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无语的巨人完成签到 ,获得积分10
3秒前
4秒前
TIGun完成签到,获得积分10
6秒前
余闻问完成签到,获得积分10
9秒前
nen发布了新的文献求助10
9秒前
10秒前
田园镇发布了新的文献求助10
11秒前
17秒前
17秒前
琬碗发布了新的文献求助10
23秒前
26秒前
无解完成签到,获得积分10
27秒前
星辰大海应助小米采纳,获得10
30秒前
木有完成签到 ,获得积分10
30秒前
Harrison发布了新的文献求助10
32秒前
哇哇哇完成签到 ,获得积分10
32秒前
34秒前
不想上班了完成签到 ,获得积分10
36秒前
39秒前
小米发布了新的文献求助10
43秒前
44秒前
45秒前
47秒前
loser完成签到 ,获得积分10
55秒前
大爱人生完成签到 ,获得积分10
57秒前
所所应助温暖的砖家采纳,获得10
1分钟前
思源应助田园镇采纳,获得10
1分钟前
魔幻诗兰完成签到,获得积分10
1分钟前
熄熄完成签到 ,获得积分10
1分钟前
zeice完成签到 ,获得积分10
1分钟前
1分钟前
hodi完成签到,获得积分10
1分钟前
1分钟前
冉亦完成签到,获得积分10
1分钟前
Ventus发布了新的文献求助10
1分钟前
深情安青应助迷路平安采纳,获得10
1分钟前
1分钟前
1分钟前
科研通AI2S应助标致一手采纳,获得10
1分钟前
俭朴听双发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《机器学习——数据表示学习及应用》 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Fiction e non fiction: storia, teorie e forme 500
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5323398
求助须知:如何正确求助?哪些是违规求助? 4464755
关于积分的说明 13893452
捐赠科研通 4356243
什么是DOI,文献DOI怎么找? 2392712
邀请新用户注册赠送积分活动 1386247
关于科研通互助平台的介绍 1356220