A Meta-reinforcement Learning based Hyperspectral Image Classification with Small Sample Set

计算机科学 强化学习 高光谱成像 人工智能 机器学习 元学习(计算机科学) 推论 任务(项目管理) 样品(材料) 模式识别(心理学) 特征(语言学) 语言学 化学 哲学 管理 色谱法 经济
作者
Prince Yaw Owusu Amoako,Guo Cao,Di Yang,Lord Amoah,Yuexuan Wang,Qiqiong Yu
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 3091-3107 被引量:1
标识
DOI:10.1109/jstars.2023.3347879
摘要

The fine spectral information contained in hyperspectral images (HSI) is combined with rich spatial features to provide feature qualities that serve as distinguishing variables for efficient classification performance. The task's objective is to correctly identify and categorize several object categories in the HSI, such as the ground, flora, water, and buildings, based on their spectral characteristics beneficial for a variety of applications, including mapping minerals, analyzing vegetation, and mapping urban land-use. The difficulty of learning new task-specific knowledge from a limited data sample that encourages less training has not been overcome by deep learning models. The capacity of current models to generalize to new tasks on small data sets is still lacking. By learning features that are transferable to facilitate adaptation to novel tasks on small samples, meta-reinforcement learning shows promise in overcoming such difficulties. We proposed a meta-reinforcement learning (Meta-RL) model that decouples task inference to improve meta-training, and accelerate meta-learning with small HSI labeled samples for efficient classification. The model employs a Capsule network for effective cooperation between spectra-spatial bands. To minimize the temporal difference error, the Apex-X Deep Q network parameter update is used to meta-train our model. The proposed model obtains an overall accuracy between 95.85% and 96.78% with computational time between 3207.9s and 7487.9s for training and validation as well as between 21.57s and 32.98s for testing. The experimental results prove the competitiveness of the proposed model to existing traditional deep learning, meta-learning, and reinforcement learning methods in both classification accuracy and computational cost.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cyh完成签到,获得积分10
刚刚
能干雁凡发布了新的文献求助10
1秒前
隐形曼青应助uuuu采纳,获得10
1秒前
打打应助bingsu108采纳,获得30
2秒前
600完成签到,获得积分10
2秒前
赘婿应助111采纳,获得10
2秒前
3秒前
赘婿应助小田采纳,获得10
4秒前
NaN应助hyPang采纳,获得10
5秒前
研友_VZG7GZ应助zaaaz采纳,获得30
5秒前
5秒前
5秒前
王张李高完成签到,获得积分20
5秒前
义气冥茗完成签到,获得积分10
6秒前
科研通AI6应助windy7采纳,获得10
6秒前
6秒前
Urologyzz发布了新的文献求助10
6秒前
zm发布了新的文献求助10
7秒前
oqhg完成签到,获得积分10
7秒前
DA发布了新的文献求助10
8秒前
桐桐应助陈进采纳,获得10
9秒前
Ava应助似冲采纳,获得10
9秒前
11秒前
11秒前
11秒前
mistletoe发布了新的文献求助10
11秒前
12秒前
Urologyzz完成签到,获得积分10
13秒前
14秒前
14秒前
14秒前
14秒前
半山完成签到,获得积分10
14秒前
15秒前
ZeroYearN完成签到,获得积分10
15秒前
15秒前
CIXI发布了新的文献求助10
16秒前
Juli发布了新的文献求助10
16秒前
zm关闭了zm文献求助
16秒前
demia发布了新的文献求助10
17秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5582755
求助须知:如何正确求助?哪些是违规求助? 4666874
关于积分的说明 14764127
捐赠科研通 4608899
什么是DOI,文献DOI怎么找? 2528885
邀请新用户注册赠送积分活动 1498196
关于科研通互助平台的介绍 1466887