清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Meta-reinforcement Learning based Hyperspectral Image Classification with Small Sample Set

计算机科学 强化学习 高光谱成像 人工智能 机器学习 元学习(计算机科学) 推论 任务(项目管理) 样品(材料) 模式识别(心理学) 特征(语言学) 语言学 化学 哲学 管理 色谱法 经济
作者
Prince Yaw Owusu Amoako,Guo Cao,Di Yang,Lord Amoah,Yuexuan Wang,Qiqiong Yu
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 3091-3107 被引量:1
标识
DOI:10.1109/jstars.2023.3347879
摘要

The fine spectral information contained in hyperspectral images (HSI) is combined with rich spatial features to provide feature qualities that serve as distinguishing variables for efficient classification performance. The task's objective is to correctly identify and categorize several object categories in the HSI, such as the ground, flora, water, and buildings, based on their spectral characteristics beneficial for a variety of applications, including mapping minerals, analyzing vegetation, and mapping urban land-use. The difficulty of learning new task-specific knowledge from a limited data sample that encourages less training has not been overcome by deep learning models. The capacity of current models to generalize to new tasks on small data sets is still lacking. By learning features that are transferable to facilitate adaptation to novel tasks on small samples, meta-reinforcement learning shows promise in overcoming such difficulties. We proposed a meta-reinforcement learning (Meta-RL) model that decouples task inference to improve meta-training, and accelerate meta-learning with small HSI labeled samples for efficient classification. The model employs a Capsule network for effective cooperation between spectra-spatial bands. To minimize the temporal difference error, the Apex-X Deep Q network parameter update is used to meta-train our model. The proposed model obtains an overall accuracy between 95.85% and 96.78% with computational time between 3207.9s and 7487.9s for training and validation as well as between 21.57s and 32.98s for testing. The experimental results prove the competitiveness of the proposed model to existing traditional deep learning, meta-learning, and reinforcement learning methods in both classification accuracy and computational cost.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
al完成签到 ,获得积分0
12秒前
fox发布了新的文献求助10
21秒前
zhangxiaoqing完成签到,获得积分10
23秒前
sidashu完成签到,获得积分10
39秒前
mmj完成签到,获得积分20
42秒前
酷酷小子完成签到 ,获得积分0
44秒前
FBQZDJG2122完成签到,获得积分10
52秒前
balko完成签到,获得积分10
1分钟前
连冷安完成签到,获得积分10
1分钟前
潇湘完成签到 ,获得积分10
1分钟前
眯眯眼的安雁完成签到 ,获得积分10
2分钟前
LeoBigman完成签到 ,获得积分10
2分钟前
2分钟前
cugwzr完成签到,获得积分10
2分钟前
qzh006完成签到,获得积分10
2分钟前
2分钟前
陶醉的烤鸡完成签到 ,获得积分10
2分钟前
Bolin发布了新的文献求助10
2分钟前
ruby发布了新的文献求助10
3分钟前
科研通AI2S应助juphen2采纳,获得10
3分钟前
zzgpku完成签到,获得积分0
3分钟前
小欣子完成签到 ,获得积分10
4分钟前
4分钟前
程翠丝发布了新的文献求助10
4分钟前
江枫渔火完成签到 ,获得积分10
4分钟前
4分钟前
科目三应助haibing采纳,获得10
4分钟前
情怀应助科研通管家采纳,获得10
4分钟前
4分钟前
研友_851KE8发布了新的文献求助10
4分钟前
寡核苷酸小白完成签到 ,获得积分10
4分钟前
5分钟前
haibing发布了新的文献求助10
5分钟前
笑傲完成签到,获得积分10
5分钟前
冉亦完成签到,获得积分10
5分钟前
5分钟前
haibing完成签到,获得积分20
5分钟前
愤怒的念蕾完成签到,获得积分10
5分钟前
DDXXC完成签到,获得积分10
5分钟前
Chen完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509948
求助须知:如何正确求助?哪些是违规求助? 4604654
关于积分的说明 14489966
捐赠科研通 4539646
什么是DOI,文献DOI怎么找? 2487621
邀请新用户注册赠送积分活动 1469921
关于科研通互助平台的介绍 1442275