A Meta-reinforcement Learning based Hyperspectral Image Classification with Small Sample Set

计算机科学 强化学习 高光谱成像 人工智能 机器学习 元学习(计算机科学) 推论 任务(项目管理) 样品(材料) 模式识别(心理学) 特征(语言学) 语言学 化学 哲学 管理 色谱法 经济
作者
Prince Yaw Owusu Amoako,Guo Cao,Di Yang,Lord Amoah,Yuexuan Wang,Qiqiong Yu
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 3091-3107 被引量:1
标识
DOI:10.1109/jstars.2023.3347879
摘要

The fine spectral information contained in hyperspectral images (HSI) is combined with rich spatial features to provide feature qualities that serve as distinguishing variables for efficient classification performance. The task's objective is to correctly identify and categorize several object categories in the HSI, such as the ground, flora, water, and buildings, based on their spectral characteristics beneficial for a variety of applications, including mapping minerals, analyzing vegetation, and mapping urban land-use. The difficulty of learning new task-specific knowledge from a limited data sample that encourages less training has not been overcome by deep learning models. The capacity of current models to generalize to new tasks on small data sets is still lacking. By learning features that are transferable to facilitate adaptation to novel tasks on small samples, meta-reinforcement learning shows promise in overcoming such difficulties. We proposed a meta-reinforcement learning (Meta-RL) model that decouples task inference to improve meta-training, and accelerate meta-learning with small HSI labeled samples for efficient classification. The model employs a Capsule network for effective cooperation between spectra-spatial bands. To minimize the temporal difference error, the Apex-X Deep Q network parameter update is used to meta-train our model. The proposed model obtains an overall accuracy between 95.85% and 96.78% with computational time between 3207.9s and 7487.9s for training and validation as well as between 21.57s and 32.98s for testing. The experimental results prove the competitiveness of the proposed model to existing traditional deep learning, meta-learning, and reinforcement learning methods in both classification accuracy and computational cost.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助科研通管家采纳,获得10
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
BowieHuang应助科研通管家采纳,获得10
刚刚
彭于晏应助科研通管家采纳,获得10
刚刚
guozizi应助科研通管家采纳,获得100
刚刚
打打应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
刚刚
赘婿应助科研通管家采纳,获得10
刚刚
隐形曼青应助科研通管家采纳,获得10
刚刚
刚刚
英姑应助科研通管家采纳,获得10
刚刚
ccnnzzz完成签到,获得积分10
1秒前
danmoyjj应助轻松戎采纳,获得10
2秒前
烟花应助李大采纳,获得10
2秒前
kkk完成签到,获得积分10
2秒前
2秒前
3秒前
Hilda007发布了新的文献求助10
4秒前
多米完成签到,获得积分10
4秒前
allzzwell完成签到 ,获得积分10
5秒前
蓝草发布了新的文献求助10
7秒前
古惑仔完成签到 ,获得积分10
7秒前
科研通AI6应助小白采纳,获得10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
kanuary完成签到,获得积分10
10秒前
牛爷爷完成签到,获得积分10
12秒前
英姑应助独特的舞仙采纳,获得10
13秒前
小白发布了新的文献求助10
15秒前
passion发布了新的文献求助10
16秒前
16秒前
16秒前
16秒前
阿峤完成签到,获得积分10
17秒前
科研通AI6应助Hui采纳,获得10
17秒前
金戈完成签到,获得积分10
18秒前
18秒前
隐形秋柔完成签到,获得积分10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613356
求助须知:如何正确求助?哪些是违规求助? 4698496
关于积分的说明 14898143
捐赠科研通 4735949
什么是DOI,文献DOI怎么找? 2547003
邀请新用户注册赠送积分活动 1510990
关于科研通互助平台的介绍 1473546