亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Meta-reinforcement Learning based Hyperspectral Image Classification with Small Sample Set

计算机科学 强化学习 高光谱成像 人工智能 机器学习 元学习(计算机科学) 推论 任务(项目管理) 样品(材料) 模式识别(心理学) 特征(语言学) 语言学 化学 哲学 管理 色谱法 经济
作者
Prince Yaw Owusu Amoako,Guo Cao,Di Yang,Lord Amoah,Yuexuan Wang,Qiqiong Yu
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 3091-3107 被引量:1
标识
DOI:10.1109/jstars.2023.3347879
摘要

The fine spectral information contained in hyperspectral images (HSI) is combined with rich spatial features to provide feature qualities that serve as distinguishing variables for efficient classification performance. The task's objective is to correctly identify and categorize several object categories in the HSI, such as the ground, flora, water, and buildings, based on their spectral characteristics beneficial for a variety of applications, including mapping minerals, analyzing vegetation, and mapping urban land-use. The difficulty of learning new task-specific knowledge from a limited data sample that encourages less training has not been overcome by deep learning models. The capacity of current models to generalize to new tasks on small data sets is still lacking. By learning features that are transferable to facilitate adaptation to novel tasks on small samples, meta-reinforcement learning shows promise in overcoming such difficulties. We proposed a meta-reinforcement learning (Meta-RL) model that decouples task inference to improve meta-training, and accelerate meta-learning with small HSI labeled samples for efficient classification. The model employs a Capsule network for effective cooperation between spectra-spatial bands. To minimize the temporal difference error, the Apex-X Deep Q network parameter update is used to meta-train our model. The proposed model obtains an overall accuracy between 95.85% and 96.78% with computational time between 3207.9s and 7487.9s for training and validation as well as between 21.57s and 32.98s for testing. The experimental results prove the competitiveness of the proposed model to existing traditional deep learning, meta-learning, and reinforcement learning methods in both classification accuracy and computational cost.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
IfItheonlyone完成签到 ,获得积分10
1秒前
沙脑完成签到 ,获得积分10
3秒前
皮尔特桃仔完成签到,获得积分10
7秒前
clhoxvpze完成签到 ,获得积分10
14秒前
努力搞科研完成签到,获得积分10
24秒前
25秒前
研友_ZGRvon完成签到,获得积分0
28秒前
Nuyoah发布了新的文献求助10
28秒前
28秒前
29秒前
菜根谭完成签到 ,获得积分10
31秒前
Shelly悦888发布了新的文献求助10
33秒前
量子星尘发布了新的文献求助10
34秒前
38秒前
Nuyoah完成签到,获得积分10
38秒前
可爱的函函应助高兴凡儿采纳,获得10
44秒前
HY发布了新的文献求助10
45秒前
小吴完成签到,获得积分10
49秒前
学不完了完成签到 ,获得积分10
49秒前
54秒前
李婧薇发布了新的文献求助10
57秒前
小秦秦发布了新的文献求助30
1分钟前
阿司匹林完成签到 ,获得积分10
1分钟前
李婧薇完成签到,获得积分20
1分钟前
轻舟完成签到,获得积分10
1分钟前
小秦秦完成签到,获得积分10
1分钟前
兴尽晚回舟完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
端庄的寄风完成签到,获得积分20
1分钟前
1分钟前
guolong发布了新的文献求助10
1分钟前
lucky发布了新的文献求助10
1分钟前
1分钟前
0406完成签到 ,获得积分10
1分钟前
fighting完成签到,获得积分10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960007
求助须知:如何正确求助?哪些是违规求助? 3506216
关于积分的说明 11128438
捐赠科研通 3238221
什么是DOI,文献DOI怎么找? 1789577
邀请新用户注册赠送积分活动 871829
科研通“疑难数据库(出版商)”最低求助积分说明 803056