A Meta-reinforcement Learning based Hyperspectral Image Classification with Small Sample Set

计算机科学 强化学习 高光谱成像 人工智能 机器学习 元学习(计算机科学) 推论 任务(项目管理) 样品(材料) 模式识别(心理学) 特征(语言学) 语言学 化学 哲学 管理 色谱法 经济
作者
Prince Yaw Owusu Amoako,Guo Cao,Di Yang,Lord Amoah,Yuexuan Wang,Qiqiong Yu
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 3091-3107 被引量:1
标识
DOI:10.1109/jstars.2023.3347879
摘要

The fine spectral information contained in hyperspectral images (HSI) is combined with rich spatial features to provide feature qualities that serve as distinguishing variables for efficient classification performance. The task's objective is to correctly identify and categorize several object categories in the HSI, such as the ground, flora, water, and buildings, based on their spectral characteristics beneficial for a variety of applications, including mapping minerals, analyzing vegetation, and mapping urban land-use. The difficulty of learning new task-specific knowledge from a limited data sample that encourages less training has not been overcome by deep learning models. The capacity of current models to generalize to new tasks on small data sets is still lacking. By learning features that are transferable to facilitate adaptation to novel tasks on small samples, meta-reinforcement learning shows promise in overcoming such difficulties. We proposed a meta-reinforcement learning (Meta-RL) model that decouples task inference to improve meta-training, and accelerate meta-learning with small HSI labeled samples for efficient classification. The model employs a Capsule network for effective cooperation between spectra-spatial bands. To minimize the temporal difference error, the Apex-X Deep Q network parameter update is used to meta-train our model. The proposed model obtains an overall accuracy between 95.85% and 96.78% with computational time between 3207.9s and 7487.9s for training and validation as well as between 21.57s and 32.98s for testing. The experimental results prove the competitiveness of the proposed model to existing traditional deep learning, meta-learning, and reinforcement learning methods in both classification accuracy and computational cost.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
菠萝葡萄完成签到,获得积分10
刚刚
kido发布了新的文献求助10
刚刚
magnoliawong完成签到,获得积分10
1秒前
可爱的函函应助131949采纳,获得10
1秒前
一线忧思发布了新的文献求助10
3秒前
3秒前
Junex完成签到 ,获得积分10
4秒前
5秒前
wanci应助半_采纳,获得10
6秒前
Monreo完成签到,获得积分20
6秒前
乐乐应助菠萝葡萄采纳,获得10
6秒前
Lee0923完成签到,获得积分10
7秒前
magnoliawong给magnoliawong的求助进行了留言
8秒前
应万言完成签到,获得积分10
8秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
12秒前
15秒前
落寞的又菡完成签到,获得积分10
15秒前
15秒前
15秒前
15秒前
16秒前
充电宝应助佳佳采纳,获得10
17秒前
暴走芭比完成签到,获得积分10
17秒前
orixero应助科研通管家采纳,获得10
17秒前
Jasper应助科研通管家采纳,获得10
17秒前
AYJ应助科研通管家采纳,获得10
17秒前
ali发布了新的文献求助10
17秒前
Criminology34应助科研通管家采纳,获得20
17秒前
顾矜应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
大个应助科研通管家采纳,获得10
17秒前
慕青应助科研通管家采纳,获得10
17秒前
赘婿应助科研通管家采纳,获得10
18秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443296
求助须知:如何正确求助?哪些是违规求助? 4553176
关于积分的说明 14241249
捐赠科研通 4474739
什么是DOI,文献DOI怎么找? 2452158
邀请新用户注册赠送积分活动 1443119
关于科研通互助平台的介绍 1418742