A Meta-reinforcement Learning based Hyperspectral Image Classification with Small Sample Set

计算机科学 强化学习 高光谱成像 人工智能 机器学习 元学习(计算机科学) 推论 任务(项目管理) 样品(材料) 模式识别(心理学) 特征(语言学) 语言学 化学 哲学 管理 色谱法 经济
作者
Prince Yaw Owusu Amoako,Guo Cao,Di Yang,Lord Amoah,Yuexuan Wang,Qiqiong Yu
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 3091-3107 被引量:1
标识
DOI:10.1109/jstars.2023.3347879
摘要

The fine spectral information contained in hyperspectral images (HSI) is combined with rich spatial features to provide feature qualities that serve as distinguishing variables for efficient classification performance. The task's objective is to correctly identify and categorize several object categories in the HSI, such as the ground, flora, water, and buildings, based on their spectral characteristics beneficial for a variety of applications, including mapping minerals, analyzing vegetation, and mapping urban land-use. The difficulty of learning new task-specific knowledge from a limited data sample that encourages less training has not been overcome by deep learning models. The capacity of current models to generalize to new tasks on small data sets is still lacking. By learning features that are transferable to facilitate adaptation to novel tasks on small samples, meta-reinforcement learning shows promise in overcoming such difficulties. We proposed a meta-reinforcement learning (Meta-RL) model that decouples task inference to improve meta-training, and accelerate meta-learning with small HSI labeled samples for efficient classification. The model employs a Capsule network for effective cooperation between spectra-spatial bands. To minimize the temporal difference error, the Apex-X Deep Q network parameter update is used to meta-train our model. The proposed model obtains an overall accuracy between 95.85% and 96.78% with computational time between 3207.9s and 7487.9s for training and validation as well as between 21.57s and 32.98s for testing. The experimental results prove the competitiveness of the proposed model to existing traditional deep learning, meta-learning, and reinforcement learning methods in both classification accuracy and computational cost.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
新洸完成签到 ,获得积分10
刚刚
研友_Z1eDgZ完成签到,获得积分10
2秒前
davedavedave完成签到 ,获得积分10
3秒前
隐形曼青应助ming采纳,获得10
3秒前
11完成签到 ,获得积分10
3秒前
BettyNie完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
笑林完成签到 ,获得积分10
6秒前
从心随缘完成签到 ,获得积分10
7秒前
Pauline完成签到 ,获得积分10
7秒前
ALLon完成签到 ,获得积分10
7秒前
杨丽完成签到,获得积分10
9秒前
坚定尔蓝完成签到,获得积分10
11秒前
黑白完成签到,获得积分10
11秒前
科研通AI2S应助tjnusq采纳,获得10
11秒前
忐忑的中心完成签到,获得积分10
12秒前
ZC完成签到,获得积分10
13秒前
赵怼怼完成签到,获得积分10
15秒前
幽默果汁完成签到 ,获得积分10
15秒前
16秒前
17秒前
善学以致用应助leo采纳,获得10
17秒前
晓晓完成签到,获得积分10
17秒前
小斌完成签到,获得积分10
18秒前
RE完成签到 ,获得积分10
18秒前
emxzemxz完成签到 ,获得积分0
18秒前
朴素羊完成签到 ,获得积分10
19秒前
月桂氮卓酮完成签到,获得积分10
19秒前
CCC完成签到 ,获得积分10
20秒前
晓晓发布了新的文献求助10
21秒前
ming发布了新的文献求助10
21秒前
豆包糊了完成签到,获得积分10
21秒前
峰宝宝完成签到,获得积分10
22秒前
dmr完成签到,获得积分10
22秒前
qzp完成签到 ,获得积分10
23秒前
纸条条完成签到 ,获得积分10
24秒前
一株多肉完成签到 ,获得积分10
24秒前
redforest0920完成签到 ,获得积分10
25秒前
孙非完成签到,获得积分10
25秒前
abab小王完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4927168
求助须知:如何正确求助?哪些是违规求助? 4196524
关于积分的说明 13033014
捐赠科研通 3969135
什么是DOI,文献DOI怎么找? 2175276
邀请新用户注册赠送积分活动 1192379
关于科研通互助平台的介绍 1103035