A Meta-reinforcement Learning based Hyperspectral Image Classification with Small Sample Set

计算机科学 强化学习 高光谱成像 人工智能 机器学习 元学习(计算机科学) 推论 任务(项目管理) 样品(材料) 模式识别(心理学) 特征(语言学) 语言学 化学 哲学 管理 色谱法 经济
作者
Prince Yaw Owusu Amoako,Guo Cao,Di Yang,Lord Amoah,Yuexuan Wang,Qiqiong Yu
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 3091-3107 被引量:1
标识
DOI:10.1109/jstars.2023.3347879
摘要

The fine spectral information contained in hyperspectral images (HSI) is combined with rich spatial features to provide feature qualities that serve as distinguishing variables for efficient classification performance. The task's objective is to correctly identify and categorize several object categories in the HSI, such as the ground, flora, water, and buildings, based on their spectral characteristics beneficial for a variety of applications, including mapping minerals, analyzing vegetation, and mapping urban land-use. The difficulty of learning new task-specific knowledge from a limited data sample that encourages less training has not been overcome by deep learning models. The capacity of current models to generalize to new tasks on small data sets is still lacking. By learning features that are transferable to facilitate adaptation to novel tasks on small samples, meta-reinforcement learning shows promise in overcoming such difficulties. We proposed a meta-reinforcement learning (Meta-RL) model that decouples task inference to improve meta-training, and accelerate meta-learning with small HSI labeled samples for efficient classification. The model employs a Capsule network for effective cooperation between spectra-spatial bands. To minimize the temporal difference error, the Apex-X Deep Q network parameter update is used to meta-train our model. The proposed model obtains an overall accuracy between 95.85% and 96.78% with computational time between 3207.9s and 7487.9s for training and validation as well as between 21.57s and 32.98s for testing. The experimental results prove the competitiveness of the proposed model to existing traditional deep learning, meta-learning, and reinforcement learning methods in both classification accuracy and computational cost.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
prj完成签到,获得积分10
1秒前
曹鑫宇发布了新的文献求助10
1秒前
Stella应助安静秋柔采纳,获得30
2秒前
Starain完成签到,获得积分10
2秒前
Lucas应助清脆如娆采纳,获得10
2秒前
wkh完成签到,获得积分10
2秒前
甜蜜绿柏完成签到,获得积分10
3秒前
华仔应助赵芳采纳,获得30
3秒前
充电宝应助火星上的宝马采纳,获得10
3秒前
饱满凝雁完成签到 ,获得积分10
3秒前
4秒前
Free发布了新的文献求助10
4秒前
科研通AI6应助幸福的依柔采纳,获得10
4秒前
4秒前
Jane发布了新的文献求助10
5秒前
prj发布了新的文献求助10
5秒前
5秒前
hhhhh1发布了新的文献求助10
5秒前
5秒前
6秒前
Trump发布了新的文献求助30
6秒前
6秒前
6秒前
QXK完成签到 ,获得积分10
7秒前
专注的傲白完成签到,获得积分20
7秒前
T723完成签到 ,获得积分10
7秒前
此生完成签到,获得积分20
7秒前
8秒前
朴艺晨完成签到 ,获得积分10
8秒前
chengzi完成签到,获得积分10
8秒前
张传明发布了新的文献求助10
9秒前
小盒儿发布了新的文献求助30
9秒前
9秒前
袁袁完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
呆萌的谷蕊给呆萌的谷蕊的求助进行了留言
10秒前
时光默念少年完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396402
求助须知:如何正确求助?哪些是违规求助? 4516808
关于积分的说明 14061325
捐赠科研通 4428678
什么是DOI,文献DOI怎么找? 2432127
邀请新用户注册赠送积分活动 1424444
关于科研通互助平台的介绍 1403588