Characterizing hub biomarkers for post-transplant renal fibrosis and unveiling their immunological functions through RNA sequencing and advanced machine learning techniques

计算生物学 纤维化 医学 生物信息学 移植 生物 病理 基因 内科学 遗传学
作者
Xinhao Niu,Cuidi Xu,Yin Celeste Cheuk,Xiaoqing Xu,Lifei Liang,Pingbao Zhang,Ruiming Rong
出处
期刊:Journal of Translational Medicine [Springer Nature]
卷期号:22 (1) 被引量:1
标识
DOI:10.1186/s12967-024-04971-9
摘要

Abstract Background Kidney transplantation stands out as the most effective renal replacement therapy for patients grappling with end-stage renal disease. However, post-transplant renal fibrosis is a prevalent and irreversible consequence, imposing a substantial clinical burden. Unfortunately, the clinical landscape remains devoid of reliable biological markers for diagnosing post-transplant renal interstitial fibrosis. Methods We obtained transcriptome and single-cell sequencing datasets of patients with renal fibrosis from NCBI Gene Expression Omnibus (GEO). Subsequently, we employed Weighted Gene Co-Expression Network Analysis (WGCNA) to identify potential genes by integrating core modules and differential genes. Functional enrichment analysis was conducted to unveil the involvement of potential pathways. To identify key biomarkers for renal fibrosis, we utilized logistic analysis, a LASSO-based tenfold cross-validation approach, and gene topological analysis within Cytoscape. Furthermore, histological staining, Western blotting (WB), and quantitative PCR (qPCR) experiments were performed in a murine model of renal fibrosis to verify the identified hub genes. Moreover, molecular docking and molecular dynamics simulations were conducted to explore possible effective drugs. Results Through WGCNA, the intersection of core modules and differential genes yielded a compendium of 92 potential genes. Logistic analysis, LASSO-based tenfold cross-validation, and gene topological analysis within Cytoscape identified four core genes (CD3G, CORO1A, FCGR2A, and GZMH) associated with renal fibrosis. The expression of these core genes was confirmed through single-cell data analysis and validated using various machine learning methods. Wet experiments also verified the upregulation of these core genes in the murine model of renal fibrosis. A positive correlation was observed between the core genes and immune cells, suggesting their potential role in bolstering immune system activity. Moreover, four potentially effective small molecules (ZINC000003830276-Tessalon, ZINC000003944422-Norvir, ZINC000008214629-Nonoxynol-9, and ZINC000085537014-Cobicistat) were identified through molecular docking and molecular dynamics simulations. Conclusion Four potential hub biomarkers most associated with post-transplant renal fibrosis, as well as four potentially effective small molecules, were identified, providing valuable insights for studying the molecular mechanisms underlying post-transplant renal fibrosis and exploring new targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林子完成签到 ,获得积分10
1秒前
健壮不斜完成签到 ,获得积分10
1秒前
羟醛不想缩合完成签到,获得积分10
3秒前
JXY发布了新的文献求助10
3秒前
令狐磬完成签到,获得积分10
5秒前
时尚萤发布了新的文献求助10
5秒前
6秒前
隐形曼青应助大马猴采纳,获得10
7秒前
MeSs完成签到 ,获得积分10
10秒前
10秒前
Graham完成签到,获得积分10
16秒前
16秒前
大马猴发布了新的文献求助10
19秒前
poker84完成签到,获得积分10
21秒前
21秒前
温婉的樱桃完成签到,获得积分10
23秒前
sfef完成签到,获得积分10
23秒前
25秒前
robi发布了新的文献求助10
26秒前
研友_VZG7GZ应助内向的易巧采纳,获得10
27秒前
打打应助时尚萤采纳,获得10
29秒前
刻苦熊猫应助LHD采纳,获得10
31秒前
31秒前
俏皮白云完成签到 ,获得积分10
32秒前
32秒前
34秒前
35秒前
zikw发布了新的文献求助10
35秒前
曹志毅发布了新的文献求助10
35秒前
彭于晏应助Chao采纳,获得10
37秒前
顾九思完成签到,获得积分10
39秒前
PANYIAO发布了新的文献求助10
40秒前
43秒前
文艺的小刺猬完成签到 ,获得积分10
43秒前
43秒前
44秒前
不要引力完成签到 ,获得积分10
44秒前
giving完成签到 ,获得积分10
45秒前
邵竺发布了新的文献求助10
46秒前
heavyD发布了新的文献求助10
46秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134943
求助须知:如何正确求助?哪些是违规求助? 2785830
关于积分的说明 7774354
捐赠科研通 2441699
什么是DOI,文献DOI怎么找? 1298104
科研通“疑难数据库(出版商)”最低求助积分说明 625079
版权声明 600825