Characterizing hub biomarkers for post-transplant renal fibrosis and unveiling their immunological functions through RNA sequencing and advanced machine learning techniques

计算生物学 纤维化 医学 生物信息学 移植 生物 病理 基因 内科学 遗传学
作者
Xinhao Niu,Cuidi Xu,Yin Celeste Cheuk,Xiaoqing Xu,Lifei Liang,Pingbao Zhang,Ruiming Rong
出处
期刊:Journal of Translational Medicine [Springer Nature]
卷期号:22 (1) 被引量:1
标识
DOI:10.1186/s12967-024-04971-9
摘要

Abstract Background Kidney transplantation stands out as the most effective renal replacement therapy for patients grappling with end-stage renal disease. However, post-transplant renal fibrosis is a prevalent and irreversible consequence, imposing a substantial clinical burden. Unfortunately, the clinical landscape remains devoid of reliable biological markers for diagnosing post-transplant renal interstitial fibrosis. Methods We obtained transcriptome and single-cell sequencing datasets of patients with renal fibrosis from NCBI Gene Expression Omnibus (GEO). Subsequently, we employed Weighted Gene Co-Expression Network Analysis (WGCNA) to identify potential genes by integrating core modules and differential genes. Functional enrichment analysis was conducted to unveil the involvement of potential pathways. To identify key biomarkers for renal fibrosis, we utilized logistic analysis, a LASSO-based tenfold cross-validation approach, and gene topological analysis within Cytoscape. Furthermore, histological staining, Western blotting (WB), and quantitative PCR (qPCR) experiments were performed in a murine model of renal fibrosis to verify the identified hub genes. Moreover, molecular docking and molecular dynamics simulations were conducted to explore possible effective drugs. Results Through WGCNA, the intersection of core modules and differential genes yielded a compendium of 92 potential genes. Logistic analysis, LASSO-based tenfold cross-validation, and gene topological analysis within Cytoscape identified four core genes (CD3G, CORO1A, FCGR2A, and GZMH) associated with renal fibrosis. The expression of these core genes was confirmed through single-cell data analysis and validated using various machine learning methods. Wet experiments also verified the upregulation of these core genes in the murine model of renal fibrosis. A positive correlation was observed between the core genes and immune cells, suggesting their potential role in bolstering immune system activity. Moreover, four potentially effective small molecules (ZINC000003830276-Tessalon, ZINC000003944422-Norvir, ZINC000008214629-Nonoxynol-9, and ZINC000085537014-Cobicistat) were identified through molecular docking and molecular dynamics simulations. Conclusion Four potential hub biomarkers most associated with post-transplant renal fibrosis, as well as four potentially effective small molecules, were identified, providing valuable insights for studying the molecular mechanisms underlying post-transplant renal fibrosis and exploring new targets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
难过从云完成签到,获得积分10
刚刚
刚刚
开心绿柳完成签到,获得积分0
刚刚
Mint完成签到 ,获得积分10
刚刚
littleblack发布了新的文献求助10
刚刚
刚刚
等待晓筠完成签到,获得积分10
1秒前
FR完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
胖子完成签到,获得积分10
2秒前
2秒前
lige完成签到 ,获得积分10
2秒前
honeybee完成签到,获得积分10
2秒前
xdedd发布了新的文献求助20
2秒前
刘子琪发布了新的文献求助10
2秒前
研友_8yN60L完成签到,获得积分10
2秒前
F_ken完成签到,获得积分10
3秒前
3秒前
彩色思真完成签到,获得积分10
3秒前
yuzhou完成签到,获得积分10
4秒前
5秒前
5秒前
FLZLC举报求助违规成功
5秒前
进击的PhD举报求助违规成功
5秒前
yznfly举报求助违规成功
5秒前
5秒前
悲惨雪糕W发布了新的文献求助10
5秒前
壮观的若之完成签到,获得积分20
5秒前
韩立完成签到,获得积分10
5秒前
asdf完成签到,获得积分10
6秒前
领导范儿应助沉默南露采纳,获得10
6秒前
herococa应助Leucalypt采纳,获得10
6秒前
7秒前
还单身的涵梅完成签到 ,获得积分10
7秒前
耳朵暴富富完成签到,获得积分10
7秒前
Ivy完成签到,获得积分10
7秒前
搜集达人应助BiangBiang采纳,获得10
7秒前
苗苗完成签到,获得积分10
8秒前
Korai发布了新的文献求助10
8秒前
helpme完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645431
求助须知:如何正确求助?哪些是违规求助? 4768803
关于积分的说明 15028908
捐赠科研通 4804012
什么是DOI,文献DOI怎么找? 2568656
邀请新用户注册赠送积分活动 1525914
关于科研通互助平台的介绍 1485570