BHHO-EAS metaheuristic applied to the NP-Hard wrapper feature selection multi-objective optimization problem

元启发式 特征选择 选择(遗传算法) 特征(语言学) 计算机科学 数学优化 人工智能 数学 哲学 语言学
作者
Mohamed SASSI,Rachid Chelouah
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-3960751/v1
摘要

Abstract Faced with the increase in high-dimensional Big Data creating more volume and complexity, the feature selection process became an essential phase in the preprocessing workflow upstream of the design of systems based on deep learning. This paper is a concrete and first application of the new metaheuristic Harris Hawk Optimization Encirclement-Attack-Synergy (HHO-EAS) in solving the NP-Hard wrapper feature selection multi-objective optimization problem. This problem combines two contradictory objectives: maximizing the accuracy of a classifier while minimizing the number of the most relevant and non-redundant selected features. To do this we hybridized HHO-EAS to create the new metaheuristic Binary HHO-EAS (BHHO-EAS). We combined HHO-EAS to the sixteen transfer functions most used in the literature structured in a balanced way among the four main categories including S-Shaped, V-Shaped, Q-Shaped and U-Shaped. This wide range of transfer function allows us to analyze the evolution of BHHO-EAS’s skills according to the assigned transfer function and to determine which of them offer the best performances. We applied wrapper feature selection to the well-known NSL-KDD dataset with the deep learning Multi Layer Perceptron (MLP) classifier. We put BHHO-EAS in competition with three other well-known population based binary metaheuristics, BPSO, BBA and BHHO. The analysis of the experimental results, compared to the three other binary metaheuristics, demonstrated that BHHO-EAS obtained the best performance on 100% of the transfer functions. This is more particularly highlighted by the U-Shaped transfer functions, which give an acceptable compromise for the two objectives of the problem with an average accuracy of 96,4% and an average size of selected features of 20.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
2秒前
Jasper应助zzz采纳,获得10
3秒前
duoduo完成签到 ,获得积分10
3秒前
4秒前
4秒前
Ava应助桑丘子采纳,获得10
5秒前
可爱的函函应助bonnie采纳,获得30
6秒前
理工完成签到,获得积分10
6秒前
研友_ED5GK完成签到,获得积分0
6秒前
知来者完成签到,获得积分10
6秒前
思源应助多读苏采纳,获得10
6秒前
7秒前
w9412发布了新的文献求助10
7秒前
卡卡要读博完成签到,获得积分10
7秒前
幽默的香芦完成签到 ,获得积分10
8秒前
8秒前
理工发布了新的文献求助10
8秒前
9秒前
救驾来迟发布了新的文献求助10
10秒前
10秒前
11秒前
SciGPT应助柔弱元瑶采纳,获得10
11秒前
11秒前
刘巧明发布了新的文献求助10
12秒前
12秒前
成就的听露关注了科研通微信公众号
12秒前
13秒前
14秒前
CipherSage应助苏苏阿苏采纳,获得10
14秒前
zwyoo发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
Soei完成签到,获得积分10
17秒前
桑丘子发布了新的文献求助10
17秒前
tianjiu发布了新的文献求助10
17秒前
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
CMOS图像传感器中低功耗流水线模数转换器的设计 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3321275
求助须知:如何正确求助?哪些是违规求助? 2952556
关于积分的说明 8561573
捐赠科研通 2629896
什么是DOI,文献DOI怎么找? 1438846
科研通“疑难数据库(出版商)”最低求助积分说明 666902
邀请新用户注册赠送积分活动 653248