Artificial Intelligence and Machine Learning in Drug Discovery and Development

计算机科学 人工智能 药物发现 机器学习 生物信息学 生物
作者
Ritik Johari,Annavi Gupta,Aniket Sharma,Sakshi Garg,Kandasamy Nagarajan,Pankaj Bhatt
标识
DOI:10.1109/smart59791.2023.10428489
摘要

Drug discovery has undergone significant changes over the past decade thanks to artificial intelligence (AI). To improve the efficiency and precision of medication research and development, this research investigates how artificial intelligence (AI) and AI technologies are used in the pharmaceutical industry. An assessment of previous studies has been conducted in this study methodically. In addition to the authors' existing knowledge, openly accessible databases were used to locate these studies. These databases were filtered by context, abstracts, and techniques relevant to the entire text of the study. We will examine two crucial aspects of drug design in this study: structure-based drug design (SBDD) and ligand-based drug design (LBDD). The two aspects are abbreviated "S" and "L" (LBDD). It focuses a considerable amount of its attention on how artificial intelligence tools (AI) can be used to simplify drug discovery and development processes, such as machine learning and deep learning. This makes these procedures more cost-effective, and may eliminate the need for clinical trials as well. Aside from semi-supervised learning, unsupervised learning, and supervised learning, machine learning consists of three subfields. Researchers have found that AI can be applied to many aspects of healthcare, leading to the implementation of AI-based functions. It is important to search for new medicines themselves because it is the most challenging and important part of developing new medicines. Additionally, we examined how AI has improved drug development over the last few years in a substantial way. Using these discoveries, researchers, academics, and the pharmaceutical industry can further explore machine learning, artificial intelligence, and deep learning in the context of drug discovery and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助hbc采纳,获得10
1秒前
3秒前
阿燕发布了新的文献求助10
3秒前
冷静飞扬完成签到,获得积分10
3秒前
小马甲应助小肖的KYT采纳,获得10
3秒前
4秒前
大模型应助英俊白玉采纳,获得10
5秒前
5秒前
6秒前
一定要早睡完成签到,获得积分10
6秒前
希望天下0贩的0应助Echo采纳,获得10
6秒前
6秒前
7秒前
fzy发布了新的文献求助10
8秒前
8秒前
小二郎应助小肖的KYT采纳,获得10
8秒前
红烧小布丁完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
深情安青应助阿燕采纳,获得30
8秒前
悠悠完成签到 ,获得积分10
9秒前
10秒前
开朗的板凳完成签到,获得积分10
10秒前
yufeng发布了新的文献求助10
11秒前
墨白发布了新的文献求助10
11秒前
君溪夜完成签到,获得积分10
11秒前
汉堡包应助小肖的KYT采纳,获得10
13秒前
13秒前
Lion发布了新的文献求助10
13秒前
14秒前
坚定的迎波完成签到,获得积分10
14秒前
汉堡包应助lllll07采纳,获得10
15秒前
彭于彦祖应助甄开心采纳,获得25
15秒前
优雅冬灵发布了新的文献求助10
16秒前
共享精神应助林木木采纳,获得10
17秒前
香蕉以菱发布了新的文献求助10
17秒前
田様应助yy采纳,获得10
18秒前
Owen应助龙卡烧烤店采纳,获得10
18秒前
18秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842381
求助须知:如何正确求助?哪些是违规求助? 3384462
关于积分的说明 10535313
捐赠科研通 3104995
什么是DOI,文献DOI怎么找? 1709939
邀请新用户注册赠送积分活动 823416
科研通“疑难数据库(出版商)”最低求助积分说明 774059