Prediction and Validation of Proline-containing Tripeptides with Angiotensin I-converting Enzyme Inhibitory Activity Using Machine Learning Models

三肽 抑制性突触后电位 化学 IC50型 对接(动物) 体外 脯氨酸 生物化学 机器学习 氨基酸 计算机科学 医学 内科学 护理部
作者
Toshiya Hatakenaka,Yohko Fujimoto,Kouji Okamoto,Tamaki Kato
出处
期刊:Letters in Drug Design & Discovery [Bentham Science]
卷期号:21
标识
DOI:10.2174/0115701808274195231113053944
摘要

Background: Numerous inhibitory peptides against angiotensin I-converting enzyme, a target for hypertension treatment, have been found in previous studies. Recently, machine learning screening has been employed to predict unidentified inhibitory peptides using a database of known inhibitory peptides and descriptor data from docking simulations. Objective: The aim of this study is to focus on angiotensin I-converting enzyme inhibitory tripeptides containing proline, to predict novel inhibitory peptides using the machine learning algorithm PyCaret based on their IC50 and descriptors from docking simulations, and to validate the screening method by machine learning by comparing the results with in vitro inhibitory activity studies. Methods: IC50 of known inhibitory peptides were collected from an online database, and descriptor data were summarized by docking simulations. Candidate inhibitory peptides were predicted from these data using the PyCaret. Candidate tripeptides were synthesized by solid-phase synthesis and their inhibitory activity was measured in vitro. Results: Seven novel tripeptides were found from the peptides predicted to have high inhibitory activity by machine learning, and these peptides were synthesized and evaluated for inhibitory activity in vitro. As a result, the proline-containing tripeptide MPA showed high inhibitory activity, with an IC50 value of 8.6 µM. Conclusion: In this study, we identified a proline-containing tripeptide with high ACE inhibitory activity among the candidates predicted by machine learning. This finding indicates that the method of predicting by machine learning is promising for future inhibitory peptide screening efforts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
怕黑紫伊发布了新的文献求助10
刚刚
小燕子发布了新的文献求助10
2秒前
英俊的铭应助Gossip采纳,获得10
5秒前
lin完成签到 ,获得积分10
6秒前
7秒前
如意的白晴完成签到 ,获得积分10
8秒前
不配.应助小燕子采纳,获得10
11秒前
小辛完成签到,获得积分20
12秒前
无花果应助李思涵采纳,获得10
14秒前
思源应助付尊蕴采纳,获得10
20秒前
勇敢虫子不怕困难完成签到,获得积分10
20秒前
23秒前
24秒前
陆晓亦完成签到,获得积分10
25秒前
Radon发布了新的文献求助10
28秒前
29秒前
共享精神应助花落水自流采纳,获得10
29秒前
30秒前
李思涵发布了新的文献求助10
30秒前
小金发布了新的文献求助30
35秒前
36秒前
上官若男应助Su采纳,获得10
37秒前
诚心爆米花完成签到,获得积分10
38秒前
逆境完成签到,获得积分10
39秒前
39秒前
DH完成签到 ,获得积分10
40秒前
42秒前
求求啦发布了新的文献求助10
42秒前
华贞完成签到,获得积分10
43秒前
科研通AI2S应助落后从阳采纳,获得30
43秒前
古凊完成签到 ,获得积分10
44秒前
小辛发布了新的文献求助10
44秒前
风趣友瑶发布了新的文献求助20
44秒前
45秒前
悦耳的柠檬完成签到,获得积分10
46秒前
Singularity应助PH采纳,获得10
47秒前
xie老板发布了新的文献求助10
47秒前
48秒前
49秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138556
求助须知:如何正确求助?哪些是违规求助? 2789483
关于积分的说明 7791467
捐赠科研通 2445886
什么是DOI,文献DOI怎么找? 1300693
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079