记忆电阻器
统计物理学
计算机科学
物理
量子力学
作者
Jieyu 婕妤 Lu 鲁,Xiaohua 小华 Xie 谢,Yaping 亚平 Lu 卢,Yalian 亚联 Wu 吴,Chunlai 春来 Li 李,Minglin 铭磷 Ma 马
出处
期刊:Chinese Physics B
[IOP Publishing]
日期:2023-12-12
卷期号:33 (4): 048701-048701
被引量:12
标识
DOI:10.1088/1674-1056/ad1483
摘要
The brain is a complex network system in which a large number of neurons are widely connected to each other and transmit signals to each other. The memory characteristic of memristors makes them suitable for simulating neuronal synapses with plasticity. In this paper, a memristor is used to simulate a synapse, a discrete small-world neuronal network is constructed based on Rulkov neurons and its dynamical behavior is explored. We explore the influence of system parameters on the dynamical behaviors of the discrete small-world network, and the system shows a variety of firing patterns such as spiking firing and triangular burst firing when the neuronal parameter α is changed. The results of a numerical simulation based on Matlab show that the network topology can affect the synchronous firing behavior of the neuronal network, and the higher the reconnection probability and number of the nearest neurons, the more significant the synchronization state of the neurons. In addition, by increasing the coupling strength of memristor synapses, synchronization performance is promoted. The results of this paper can boost research into complex neuronal networks coupled with memristor synapses and further promote the development of neuroscience.
科研通智能强力驱动
Strongly Powered by AbleSci AI