已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Efficacy of ChatGPT in Cantonese Sentiment Analysis: A Comparative Study (Preprint)

情绪分析 词典 计算机科学 人工智能 自然语言处理 支持向量机 众包 机器学习 万维网
作者
Ziru FU,Yu‐Cheng Hsu,Christian S. Chan,C. Lau,Joyce Liu,Paul Yip
出处
期刊:Journal of Medical Internet Research 被引量:9
标识
DOI:10.2196/51069
摘要

Background: Sentiment analysis is a significant yet difficult task in natural language processing. The linguistic peculiarities of Cantonese, including its high similarity with Standard Chinese, its grammatical and lexical uniqueness, and its colloquialism and multilingualism, make it different from other languages and pose additional challenges to sentiment analysis. Recent advances in models such as ChatGPT offer potential viable solutions. Objective: This study investigated the efficacy of GPT-3.5 and GPT-4 in Cantonese sentiment analysis in the context of web-based counseling and compared their performance with other mainstream methods, including lexicon-based methods and machine learning approaches. Methods: We analyzed transcripts from a web-based, text-based counseling service in Hong Kong, including a total of 131 individual counseling sessions and 6169 messages between counselors and help-seekers. First, a codebook was developed for human annotation. A simple prompt ("Is the sentiment of this Cantonese text positive, neutral, or negative? Respond with the sentiment label only.") was then given to GPT-3.5 and GPT-4 to label each message's sentiment. GPT-3.5 and GPT-4's performance was compared with a lexicon-based method and 3 state-of-the-art models, including linear regression, support vector machines, and long short-term memory neural networks. Results: Our findings revealed ChatGPT's remarkable accuracy in sentiment classification, with GPT-3.5 and GPT-4, respectively, achieving 92.1% (5682/6169) and 95.3% (5880/6169) accuracy in identifying positive, neutral, and negative sentiment, thereby outperforming the traditional lexicon-based method, which had an accuracy of 37.2% (2295/6169), and the 3 machine learning models, which had accuracies ranging from 66% (4072/6169) to 70.9% (4374/6169). Conclusions: Among many text analysis techniques, ChatGPT demonstrates superior accuracy and emerges as a promising tool for Cantonese sentiment analysis. This study also highlights ChatGPT's applicability in real-world scenarios, such as monitoring the quality of text-based counseling services and detecting message-level sentiments in vivo. The insights derived from this study pave the way for further exploration into the capabilities of ChatGPT in the context of underresourced languages and specialized domains like psychotherapy and natural language processing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
星星轨迹发布了新的文献求助10
2秒前
活力科研人完成签到 ,获得积分10
2秒前
黑龙之翼完成签到,获得积分20
3秒前
研友_LB1rk8发布了新的文献求助10
3秒前
JamesPei应助张Z采纳,获得10
4秒前
4秒前
王逗逗发布了新的文献求助10
6秒前
8秒前
10秒前
zwhy完成签到 ,获得积分10
11秒前
清茶韵心发布了新的文献求助10
12秒前
13秒前
可爱的函函应助ardejiang采纳,获得10
13秒前
游戏人间发布了新的文献求助10
13秒前
Stroeve完成签到,获得积分10
13秒前
14秒前
豆豆发布了新的文献求助10
14秒前
所所应助dpp采纳,获得10
15秒前
16秒前
16秒前
KEyanba发布了新的文献求助10
17秒前
Kiyoi发布了新的文献求助10
18秒前
yry完成签到,获得积分20
20秒前
baolong发布了新的文献求助10
20秒前
niuma应助HJJHJH采纳,获得50
24秒前
清茶韵心完成签到,获得积分10
24秒前
suzy-123完成签到,获得积分10
25秒前
小啦啦3082完成签到 ,获得积分10
28秒前
28秒前
30秒前
浩儿完成签到,获得积分10
31秒前
fanlee发布了新的文献求助10
32秒前
34秒前
34秒前
Kiyoi完成签到,获得积分10
35秒前
jiangzhixia发布了新的文献求助10
35秒前
37秒前
38秒前
38秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466581
求助须知:如何正确求助?哪些是违规求助? 3059363
关于积分的说明 9066062
捐赠科研通 2749840
什么是DOI,文献DOI怎么找? 1508739
科研通“疑难数据库(出版商)”最低求助积分说明 697030
邀请新用户注册赠送积分活动 696858