Interpretable Machine Learning‐Assisted High‐Throughput Screening for Understanding NRR Electrocatalyst Performance Modulation between Active Center and C‐N Coordination

催化作用 价(化学) 价电子 电催化剂 化学 电化学 计算机科学 物理 电子 物理化学 生物化学 有机化学 电极 量子力学
作者
Jinxin Sun,Anjie Chen,Junming Guan,Ying Han,Yongjun Liu,Xianghong Niu,Maoshuai He,Li Shi,Jinlan Wang,Xiuyun Zhang
出处
期刊:Energy & environmental materials 卷期号:7 (5) 被引量:5
标识
DOI:10.1002/eem2.12693
摘要

Understanding the correlation between the fundamental descriptors and catalytic performance is meaningful to guide the design of high‐performance electrochemical catalysts. However, exploring key factors that affect catalytic performance in the vast catalyst space remains challenging for people. Herein, to accurately identify the factors that affect the performance of N 2 reduction, we apply interpretable machine learning (ML) to analyze high‐throughput screening results, which is also suited to other surface reactions in catalysis. To expound on the paradigm, 33 promising catalysts are screened from 168 carbon‐supported candidates, specifically single‐atom catalysts (SACs) supported by a BC 3 monolayer (TM@V B/C ‐N n = 0–3 ‐BC 3 ) via high‐throughput screening. Subsequently, the hybrid sampling method and XGBoost model are selected to classify eligible and non‐eligible catalysts. Through feature interpretation using Shapley Additive Explanations (SHAP) analysis, two crucial features, that is, the number of valence electrons ( N v ) and nitrogen substitution ( N n ), are screened out. Combining SHAP analysis and electronic structure calculations, the synergistic effect between an active center with low valence electron numbers and reasonable C‐N coordination (a medium fraction of nitrogen substitution) can exhibit high catalytic performance. Finally, six superior catalysts with a limiting potential lower than −0.4 V are predicted. Our workflow offers a rational approach to obtaining key information on catalytic performance from high‐throughput screening results to design efficient catalysts that can be applied to other materials and reactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
youyou发布了新的文献求助30
刚刚
1秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
cocolu应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得50
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI2S应助Mei采纳,获得10
2秒前
3秒前
blueice完成签到,获得积分10
5秒前
5秒前
6秒前
7秒前
bkagyin应助李桥溪采纳,获得10
9秒前
9秒前
Akim应助zzzzzzzzzl采纳,获得20
11秒前
万能图书馆应助虾米采纳,获得10
12秒前
kk发布了新的文献求助10
12秒前
阿怪发布了新的文献求助10
14秒前
缓慢小蚂蚁完成签到 ,获得积分10
15秒前
Queenie完成签到,获得积分10
16秒前
我是老大应助研友_LwlAgn采纳,获得10
16秒前
18秒前
zzuwxj完成签到,获得积分10
18秒前
CodeCraft应助淡淡菠萝采纳,获得10
19秒前
19秒前
虚幻的涵柏完成签到,获得积分10
21秒前
23秒前
李桥溪发布了新的文献求助10
23秒前
23秒前
Yewen发布了新的文献求助10
26秒前
26秒前
26秒前
Echopotter完成签到,获得积分10
26秒前
33完成签到,获得积分0
27秒前
antonx完成签到,获得积分10
29秒前
RyanL完成签到,获得积分20
30秒前
情怀应助ZRDJ采纳,获得10
31秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Product Class 33: N-Arylhydroxylamines 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3387071
求助须知:如何正确求助?哪些是违规求助? 3000056
关于积分的说明 8788527
捐赠科研通 2685768
什么是DOI,文献DOI怎么找? 1471224
科研通“疑难数据库(出版商)”最低求助积分说明 680200
邀请新用户注册赠送积分活动 672872