检出限
胶体金
化学
双模
核化学
选择性
纳米颗粒
拉曼光谱
阿布茨
纳米技术
材料科学
催化作用
色谱法
抗氧化剂
有机化学
DPPH
航空航天工程
工程类
物理
光学
作者
Yifan Cui,Qiulan Li,Dezhi Yang,Yaling Yang
标识
DOI:10.1016/j.saa.2024.124100
摘要
Peroxidase (POD)-mimicking nanozymes have got great progress in the sensing field, but most nanozyme assaying systems are built with a single-signal output mode, which is vulnerable to the effect of different factors. Thus, establishment of a dual-signal output mode is necessary for acquiring dependable and durable performance. This work described an Fe doped noradrenaline-based carbon dots and Prussian blue (Fe,NA-CDs/PB) nanocomposite as a POD-like nanozyme and modified gold nanoparticles (AuNPs) for the colorimetric and surface-enhanced Raman scattering (SERS) dual-mode sensor of Pb(II) in traditional Chinese medicine samples. With 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and 3,3',5,5'-tetramethylbenzidine (TMB) as the substrates, it was found that the addition of Pb(II) inhibited the POD-like activity of Fe,NA-CDs/PB and AuNPs, so it was used for colorimetric and SERS dual-mode assays. The POD-like activity was shown to be a "ping-pong" catalytic mechanism, whereas the addition of Pb(II) produced noncompetitive inhibition with modulatory effects on Fe,NA-CDs/PB. The linear response range for colorimetric and SERS sensor detection of Pb(II) was 0.01-1.00 mg/L with the detection limit of 5 μg/L and 8 μg/L, respectively. This dual-mode detection system shows excellent selectivity. More importantly, the Pb(II) in traditional Chinese medicine samples have successfully assayed with good recovery from 90.4 to 108.9 %.
科研通智能强力驱动
Strongly Powered by AbleSci AI