Identifying general reaction conditions by bandit optimization

标杆管理 苯胺 计算机科学 反应条件 强化学习 多样性(控制论) 组合化学 生化工程 化学 人工智能 催化作用 有机化学 工程类 营销 业务
作者
Jason Y. Wang,Jason M. Stevens,Stavros K. Kariofillis,Mai-Jan Tom,Dung L. Golden,Jun Li,José E. Tábora,Marvin Parasram,Benjamin J. Shields,David N. Primer,Bo Hao,David Del Valle,Stacey DiSomma,A.H. Furman,Greg Zipp,Sergey Melnikov,James Paulson,Abigail G. Doyle
出处
期刊:Nature [Nature Portfolio]
卷期号:626 (8001): 1025-1033 被引量:22
标识
DOI:10.1038/s41586-024-07021-y
摘要

Reaction conditions that are generally applicable to a wide variety of substrates are highly desired, especially in the pharmaceutical and chemical industries1–6. Although many approaches are available to evaluate the general applicability of developed conditions, a universal approach to efficiently discover these conditions during optimizations is rare. Here we report the design, implementation and application of reinforcement learning bandit optimization models7–10 to identify generally applicable conditions by efficient condition sampling and evaluation of experimental feedback. Performance benchmarking on existing datasets statistically showed high accuracies for identifying general conditions, with up to 31% improvement over baselines that mimic state-of-the-art optimization approaches. A palladium-catalysed imidazole C–H arylation reaction, an aniline amide coupling reaction and a phenol alkylation reaction were investigated experimentally to evaluate use cases and functionalities of the bandit optimization model in practice. In all three cases, the reaction conditions that were most generally applicable yet not well studied for the respective reaction were identified after surveying less than 15% of the expert-designed reaction space. Bandit optimization models are used to identify generally applicable conditions by efficient condition sampling and evaluation of experimental feedback.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
贪玩的苠完成签到,获得积分10
2秒前
金金驳回了Lucas应助
2秒前
ocean发布了新的文献求助10
2秒前
Zzz完成签到,获得积分10
5秒前
赘婿应助qiukeyingying采纳,获得10
5秒前
6秒前
ff完成签到 ,获得积分10
6秒前
7秒前
桐桐应助Ebony采纳,获得10
7秒前
7秒前
Akim应助zhoushishan采纳,获得30
7秒前
大模型应助科研爱好者采纳,获得10
9秒前
胡建鹏完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助30
9秒前
11秒前
茵yin完成签到,获得积分10
12秒前
小马甲应助L~采纳,获得10
12秒前
奚斌发布了新的文献求助10
12秒前
SciGPT应助LHQ采纳,获得10
12秒前
13秒前
Yewen发布了新的文献求助50
16秒前
16秒前
17秒前
17秒前
RW乾完成签到,获得积分10
17秒前
无眠宇宙完成签到,获得积分10
17秒前
打打应助余方昆采纳,获得10
17秒前
无眠宇宙发布了新的文献求助10
20秒前
chen完成签到,获得积分10
20秒前
20秒前
zhoushishan发布了新的文献求助30
22秒前
22秒前
L~发布了新的文献求助10
22秒前
马康辉应助眯眯眼的夜雪采纳,获得10
23秒前
24秒前
24秒前
25秒前
悠悠完成签到,获得积分10
30秒前
ding应助科研小白鼠采纳,获得30
30秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979791
求助须知:如何正确求助?哪些是违规求助? 3523813
关于积分的说明 11219007
捐赠科研通 3261341
什么是DOI,文献DOI怎么找? 1800573
邀请新用户注册赠送积分活动 879179
科研通“疑难数据库(出版商)”最低求助积分说明 807193