亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identifying general reaction conditions by bandit optimization

标杆管理 苯胺 计算机科学 反应条件 强化学习 多样性(控制论) 组合化学 生化工程 化学 人工智能 催化作用 有机化学 工程类 营销 业务
作者
Jason Y. Wang,Jason M. Stevens,Stavros K. Kariofillis,Mai-Jan Tom,Dung L. Golden,Jun Li,José E. Tábora,Marvin Parasram,Benjamin J. Shields,David N. Primer,Bo Hao,David Del Valle,Stacey DiSomma,A.H. Furman,Greg Zipp,Sergey Melnikov,James Paulson,Abigail G. Doyle
出处
期刊:Nature [Springer Nature]
卷期号:626 (8001): 1025-1033 被引量:36
标识
DOI:10.1038/s41586-024-07021-y
摘要

Reaction conditions that are generally applicable to a wide variety of substrates are highly desired, especially in the pharmaceutical and chemical industries1–6. Although many approaches are available to evaluate the general applicability of developed conditions, a universal approach to efficiently discover these conditions during optimizations is rare. Here we report the design, implementation and application of reinforcement learning bandit optimization models7–10 to identify generally applicable conditions by efficient condition sampling and evaluation of experimental feedback. Performance benchmarking on existing datasets statistically showed high accuracies for identifying general conditions, with up to 31% improvement over baselines that mimic state-of-the-art optimization approaches. A palladium-catalysed imidazole C–H arylation reaction, an aniline amide coupling reaction and a phenol alkylation reaction were investigated experimentally to evaluate use cases and functionalities of the bandit optimization model in practice. In all three cases, the reaction conditions that were most generally applicable yet not well studied for the respective reaction were identified after surveying less than 15% of the expert-designed reaction space. Bandit optimization models are used to identify generally applicable conditions by efficient condition sampling and evaluation of experimental feedback.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
manjusaka发布了新的文献求助10
11秒前
manjusaka完成签到,获得积分10
16秒前
科研通AI6.1应助jy采纳,获得10
16秒前
17秒前
22秒前
畅快甜瓜发布了新的文献求助30
23秒前
29秒前
jy发布了新的文献求助10
37秒前
可爱的函函应助畅快甜瓜采纳,获得30
43秒前
49秒前
zzgpku完成签到,获得积分0
50秒前
1分钟前
LM完成签到,获得积分10
1分钟前
1分钟前
1分钟前
畅快甜瓜发布了新的文献求助30
1分钟前
完美世界应助读书的时候采纳,获得10
1分钟前
2分钟前
2分钟前
传奇3应助读书的时候采纳,获得10
2分钟前
宋美美发布了新的文献求助10
2分钟前
2分钟前
Unicorn完成签到,获得积分10
2分钟前
2分钟前
SiboN完成签到,获得积分10
2分钟前
畅快甜瓜发布了新的文献求助10
2分钟前
3分钟前
宋美美完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732235
求助须知:如何正确求助?哪些是违规求助? 5337592
关于积分的说明 15322064
捐赠科研通 4877886
什么是DOI,文献DOI怎么找? 2620721
邀请新用户注册赠送积分活动 1569955
关于科研通互助平台的介绍 1526556