Identifying general reaction conditions by bandit optimization

标杆管理 苯胺 计算机科学 反应条件 强化学习 多样性(控制论) 组合化学 生化工程 化学 人工智能 催化作用 有机化学 工程类 营销 业务
作者
Jason Y. Wang,Jason M. Stevens,Stavros K. Kariofillis,Mai-Jan Tom,Dung L. Golden,Jun Li,José E. Tábora,Marvin Parasram,Benjamin J. Shields,David N. Primer,Bo Hao,David Del Valle,Stacey DiSomma,A.H. Furman,Greg Zipp,Sergey Melnikov,James Paulson,Abigail G. Doyle
出处
期刊:Nature [Springer Nature]
卷期号:626 (8001): 1025-1033 被引量:12
标识
DOI:10.1038/s41586-024-07021-y
摘要

Reaction conditions that are generally applicable to a wide variety of substrates are highly desired, especially in the pharmaceutical and chemical industries1–6. Although many approaches are available to evaluate the general applicability of developed conditions, a universal approach to efficiently discover these conditions during optimizations is rare. Here we report the design, implementation and application of reinforcement learning bandit optimization models7–10 to identify generally applicable conditions by efficient condition sampling and evaluation of experimental feedback. Performance benchmarking on existing datasets statistically showed high accuracies for identifying general conditions, with up to 31% improvement over baselines that mimic state-of-the-art optimization approaches. A palladium-catalysed imidazole C–H arylation reaction, an aniline amide coupling reaction and a phenol alkylation reaction were investigated experimentally to evaluate use cases and functionalities of the bandit optimization model in practice. In all three cases, the reaction conditions that were most generally applicable yet not well studied for the respective reaction were identified after surveying less than 15% of the expert-designed reaction space. Bandit optimization models are used to identify generally applicable conditions by efficient condition sampling and evaluation of experimental feedback.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助轩轩采纳,获得10
刚刚
刚刚
刚刚
Hello应助蹦蹦炸弹采纳,获得10
1秒前
阿达完成签到,获得积分20
1秒前
Augenstern完成签到,获得积分10
4秒前
外向含之发布了新的文献求助30
5秒前
灵寒完成签到 ,获得积分10
5秒前
Chen完成签到,获得积分10
8秒前
shiyu发布了新的文献求助10
8秒前
9秒前
李健应助冷静惜灵采纳,获得10
10秒前
黙宇循光发布了新的文献求助10
13秒前
Xu完成签到,获得积分10
13秒前
蹦蹦炸弹发布了新的文献求助10
14秒前
淡淡从安完成签到 ,获得积分10
16秒前
16秒前
鱼与驴完成签到,获得积分10
16秒前
华仔应助Flanker采纳,获得10
17秒前
hugdoggy完成签到,获得积分10
18秒前
18秒前
20秒前
shiyu完成签到,获得积分10
20秒前
斯文败类应助abne采纳,获得10
21秒前
acuter发布了新的文献求助10
22秒前
米线ing发布了新的文献求助10
22秒前
拾叁发布了新的文献求助10
23秒前
23秒前
陈乔发布了新的文献求助10
23秒前
蹦蹦炸弹完成签到,获得积分10
24秒前
26秒前
27秒前
宣孤菱完成签到,获得积分10
27秒前
29秒前
善学以致用应助围城采纳,获得10
30秒前
DL发布了新的文献求助10
31秒前
31秒前
Flanker发布了新的文献求助10
31秒前
abne发布了新的文献求助10
32秒前
mengmeng6021发布了新的文献求助10
33秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313894
求助须知:如何正确求助?哪些是违规求助? 2946248
关于积分的说明 8529066
捐赠科研通 2621808
什么是DOI,文献DOI怎么找? 1434115
科研通“疑难数据库(出版商)”最低求助积分说明 665131
邀请新用户注册赠送积分活动 650738