Hybrid Neural State-Space Modeling for Supervised and Unsupervised Electrocardiographic Imaging

可解释性 杠杆(统计) 人工智能 无监督学习 计算机科学 机器学习 监督学习 人工神经网络 模式识别(心理学)
作者
Xiajun Jiang,Ryan Missel,Maryam Toloubidokhti,Karli Gillette,Anton J. Prassl,Gernot Plank,B. Milan Horáček,John L. Sapp,Linwei Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (8): 2733-2744
标识
DOI:10.1109/tmi.2024.3377094
摘要

State-space modeling (SSM) provides a general framework for many image reconstruction tasks. Error in a priori physiological knowledge of the imaging physics, can bring incorrectness to solutions. Modern deep-learning approaches show great promise but lack interpretability and rely on large amounts of labeled data. In this paper, we present a novel hybrid SSM framework for electrocardiographic imaging (ECGI) to leverage the advantage of state-space formulations in data-driven learning. We first leverage the physics-based forward operator to supervise the learning. We then introduce neural modeling of the transition function and the associated Bayesian filtering strategy. We applied the hybrid SSM framework to reconstruct electrical activity on the heart surface from body-surface potentials. In unsupervised settings of both in-silico and in-vivo data without cardiac electrical activity as the ground truth to supervise the learning, we demonstrated improved ECGI performances of the hybrid SSM framework trained from a small number of ECG observations in comparison to the fixed SSM. We further demonstrated that, when in-silico simulation data becomes available, mixed supervised and unsupervised training of the hybrid SSM achieved a further 40.6% and 45.6% improvements, respectively, in comparison to traditional ECGI baselines and supervised data-driven ECGI baselines for localizing the origin of ventricular activations in real data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Luo完成签到,获得积分20
1秒前
1秒前
3秒前
kane发布了新的文献求助10
3秒前
满意丝发布了新的文献求助10
4秒前
秋夏完成签到,获得积分10
4秒前
sxj完成签到,获得积分20
5秒前
8秒前
8秒前
今后应助伶俐的血茗采纳,获得10
9秒前
纯真冷安完成签到,获得积分10
10秒前
11秒前
骄傲的叶凡完成签到,获得积分10
11秒前
cqq完成签到,获得积分20
12秒前
13秒前
13秒前
Jasper应助guyue采纳,获得10
13秒前
你今天学了多少完成签到 ,获得积分10
13秒前
thchiang发布了新的文献求助10
15秒前
17秒前
18秒前
18秒前
18秒前
sxr完成签到,获得积分10
19秒前
19秒前
mm发布了新的文献求助10
21秒前
八二力发布了新的文献求助10
23秒前
zzzj发布了新的文献求助100
23秒前
25秒前
25秒前
26秒前
eeee发布了新的文献求助20
26秒前
小马完成签到 ,获得积分10
27秒前
慕青应助科研通管家采纳,获得10
28秒前
28秒前
科目三应助科研通管家采纳,获得10
28秒前
幸福一斩应助科研通管家采纳,获得10
28秒前
28秒前
28秒前
Lucas应助科研通管家采纳,获得30
28秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5219408
求助须知:如何正确求助?哪些是违规求助? 4393239
关于积分的说明 13678491
捐赠科研通 4255911
什么是DOI,文献DOI怎么找? 2335257
邀请新用户注册赠送积分活动 1332863
关于科研通互助平台的介绍 1287120