Hybrid Neural State-Space Modeling for Supervised and Unsupervised Electrocardiographic Imaging

可解释性 杠杆(统计) 人工智能 无监督学习 计算机科学 机器学习 监督学习 人工神经网络 模式识别(心理学)
作者
Xiajun Jiang,Ryan Missel,Maryam Toloubidokhti,Karli Gillette,Anton J. Prassl,Gernot Plank,B. Milan Horáček,John L. Sapp,Linwei Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (8): 2733-2744
标识
DOI:10.1109/tmi.2024.3377094
摘要

State-space modeling (SSM) provides a general framework for many image reconstruction tasks. Error in a priori physiological knowledge of the imaging physics, can bring incorrectness to solutions. Modern deep-learning approaches show great promise but lack interpretability and rely on large amounts of labeled data. In this paper, we present a novel hybrid SSM framework for electrocardiographic imaging (ECGI) to leverage the advantage of state-space formulations in data-driven learning. We first leverage the physics-based forward operator to supervise the learning. We then introduce neural modeling of the transition function and the associated Bayesian filtering strategy. We applied the hybrid SSM framework to reconstruct electrical activity on the heart surface from body-surface potentials. In unsupervised settings of both in-silico and in-vivo data without cardiac electrical activity as the ground truth to supervise the learning, we demonstrated improved ECGI performances of the hybrid SSM framework trained from a small number of ECG observations in comparison to the fixed SSM. We further demonstrated that, when in-silico simulation data becomes available, mixed supervised and unsupervised training of the hybrid SSM achieved a further 40.6% and 45.6% improvements, respectively, in comparison to traditional ECGI baselines and supervised data-driven ECGI baselines for localizing the origin of ventricular activations in real data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
斜阳正浓发布了新的文献求助10
3秒前
diraczh完成签到,获得积分10
3秒前
4秒前
5秒前
6秒前
南小木完成签到,获得积分10
6秒前
清脆大树发布了新的文献求助10
7秒前
lant0ng发布了新的文献求助20
7秒前
9秒前
歪比巴卜完成签到,获得积分20
10秒前
善学以致用应助斜阳正浓采纳,获得10
10秒前
善学以致用应助SN采纳,获得10
11秒前
oui发布了新的文献求助10
11秒前
甜蜜凡波发布了新的文献求助10
12秒前
12秒前
涂上小张完成签到,获得积分10
14秒前
15秒前
游泳的龙完成签到,获得积分10
16秒前
18秒前
zfffffff发布了新的文献求助10
18秒前
Eva完成签到,获得积分10
19秒前
22秒前
爱笑紫菜完成签到,获得积分10
22秒前
852应助lpp_采纳,获得10
23秒前
南山发布了新的文献求助30
24秒前
一只鱼完成签到,获得积分10
24秒前
25秒前
盼盼完成签到 ,获得积分10
27秒前
27秒前
HYT发布了新的文献求助20
28秒前
su发布了新的文献求助10
30秒前
30秒前
所所应助皮皮虾采纳,获得10
30秒前
FashionBoy应助leo瀚采纳,获得10
33秒前
长夜变清早完成签到,获得积分10
34秒前
34秒前
朱之欣完成签到,获得积分10
35秒前
36秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993490
求助须知:如何正确求助?哪些是违规求助? 3534168
关于积分的说明 11264831
捐赠科研通 3274008
什么是DOI,文献DOI怎么找? 1806220
邀请新用户注册赠送积分活动 883055
科研通“疑难数据库(出版商)”最低求助积分说明 809662