Hybrid Neural State-Space Modeling for Supervised and Unsupervised Electrocardiographic Imaging

可解释性 杠杆(统计) 人工智能 无监督学习 计算机科学 机器学习 监督学习 人工神经网络 模式识别(心理学)
作者
Xiajun Jiang,Ryan Missel,Maryam Toloubidokhti,Karli Gillette,Anton J. Prassl,Gernot Plank,B. Milan Horáček,John L. Sapp,Linwei Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (8): 2733-2744
标识
DOI:10.1109/tmi.2024.3377094
摘要

State-space modeling (SSM) provides a general framework for many image reconstruction tasks. Error in a priori physiological knowledge of the imaging physics, can bring incorrectness to solutions. Modern deep-learning approaches show great promise but lack interpretability and rely on large amounts of labeled data. In this paper, we present a novel hybrid SSM framework for electrocardiographic imaging (ECGI) to leverage the advantage of state-space formulations in data-driven learning. We first leverage the physics-based forward operator to supervise the learning. We then introduce neural modeling of the transition function and the associated Bayesian filtering strategy. We applied the hybrid SSM framework to reconstruct electrical activity on the heart surface from body-surface potentials. In unsupervised settings of both in-silico and in-vivo data without cardiac electrical activity as the ground truth to supervise the learning, we demonstrated improved ECGI performances of the hybrid SSM framework trained from a small number of ECG observations in comparison to the fixed SSM. We further demonstrated that, when in-silico simulation data becomes available, mixed supervised and unsupervised training of the hybrid SSM achieved a further 40.6% and 45.6% improvements, respectively, in comparison to traditional ECGI baselines and supervised data-driven ECGI baselines for localizing the origin of ventricular activations in real data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nexus完成签到,获得积分10
刚刚
lcs发布了新的文献求助10
刚刚
搜集达人应助灵巧小鸽子采纳,获得10
刚刚
隐形白亦完成签到,获得积分10
1秒前
梁栋发布了新的文献求助10
1秒前
科研通AI2S应助明亮采纳,获得10
1秒前
koko完成签到,获得积分10
1秒前
科研通AI6应助vae采纳,获得10
2秒前
ghdrghh完成签到,获得积分10
3秒前
3秒前
Liu应助美好斓采纳,获得10
3秒前
wds完成签到,获得积分20
3秒前
樱sky完成签到,获得积分10
3秒前
午餐肉完成签到,获得积分10
4秒前
隐形曼青应助神勇语柳采纳,获得10
4秒前
静花水月完成签到,获得积分10
4秒前
4秒前
充电宝应助帅气咖啡采纳,获得10
4秒前
5秒前
Ffpcjwcx完成签到,获得积分10
5秒前
5秒前
Liu应助愉快发带采纳,获得10
5秒前
6秒前
小蘑菇应助JJJ采纳,获得10
6秒前
传奇3应助麻花精采纳,获得10
6秒前
6秒前
且听风吟且听雨完成签到,获得积分10
8秒前
阿里院士发布了新的文献求助10
8秒前
bxd完成签到,获得积分10
9秒前
希望天下0贩的0应助Cy0412采纳,获得10
9秒前
zhaoh发布了新的文献求助10
9秒前
10秒前
10秒前
欣喜眼神完成签到,获得积分10
10秒前
vae完成签到,获得积分10
10秒前
嘿撒发布了新的文献求助10
10秒前
知性的滑板关注了科研通微信公众号
10秒前
Ao完成签到,获得积分20
11秒前
星河完成签到,获得积分10
11秒前
11秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587753
求助须知:如何正确求助?哪些是违规求助? 4670917
关于积分的说明 14784550
捐赠科研通 4623692
什么是DOI,文献DOI怎么找? 2531413
邀请新用户注册赠送积分活动 1500112
关于科研通互助平台的介绍 1468156