Comparative Analysis of Brain Waves for EEG-Based Depression Detection in the Prefrontal Cortex Lobe using LSTM

前额叶皮质 脑电图 颞叶 神经科学 萧条(经济学) 脑电波 心理学 计算机科学 癫痫 认知 宏观经济学 经济
作者
Monica Pratiwi
标识
DOI:10.1109/conmedia60526.2023.10428546
摘要

Global anxiety and depression have become 25% more prevalent, with teenagers and women being the most affected. Approximately 280 million people suffer from depression. Doctors and psychologists are able to diagnose depressive disorders through counselling sessions and ask relevant questions to the subject, despite being vulnerable to mistakes due to the examiner's lack of experience. Therefore, automated depression detection development is necessary to validate doctor and psychiatrist assessment. Electroencephalography (EEG) is considered to be a popular option for the detection and investigation of various mental disorders. In this study, a comparison and analysis of each existing brain wave is carried out, namely Alpha (8-12Hz), Beta (13-30Hz), Theta (4–8 Hz), Delta (0.5-4 Hz) and Gamma (30-50Hz). From each wave, an accuracy testing is carried out for three groups of features: linear features, nonlinear features, and a combination of linear and nonlinear features. The given results demonstrate that the combination of linear and nonlinear data consistently yields the highest accuracy outcomes across all waves. Also, the combination of theta waves and linear nonlinear features contributed the highest accuracy (84%) using LSTM as the classifier.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助original采纳,获得10
刚刚
天天快乐应助ylf采纳,获得10
刚刚
zjc完成签到,获得积分10
1秒前
丘比特应助几两采纳,获得10
2秒前
搜集达人应助听话的捕采纳,获得10
2秒前
爱你完成签到,获得积分10
2秒前
小乔发布了新的文献求助10
3秒前
科研通AI5应助LR采纳,获得30
3秒前
3秒前
3秒前
3秒前
4秒前
FashionBoy应助滑头泥鳅采纳,获得10
5秒前
TiYork完成签到 ,获得积分10
5秒前
叶95发布了新的文献求助10
7秒前
8秒前
Grayball应助小胡同学采纳,获得10
8秒前
10秒前
11秒前
czz完成签到,获得积分10
11秒前
科研通AI5应助yn采纳,获得10
11秒前
song发布了新的文献求助10
11秒前
11秒前
13秒前
14秒前
14秒前
14秒前
共享精神应助一一一采纳,获得10
14秒前
15秒前
15秒前
尼克拉倒发布了新的文献求助10
16秒前
xmfffff发布了新的文献求助10
17秒前
迈克完成签到,获得积分20
17秒前
东京高球发布了新的文献求助30
17秒前
jack发布了新的文献求助10
18秒前
18秒前
南风似潇完成签到,获得积分10
18秒前
星辰大海应助kiguf采纳,获得10
19秒前
小白加油发布了新的文献求助10
19秒前
千宝发布了新的文献求助10
19秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3749090
求助须知:如何正确求助?哪些是违规求助? 3292339
关于积分的说明 10076170
捐赠科研通 3007852
什么是DOI,文献DOI怎么找? 1651863
邀请新用户注册赠送积分活动 786843
科研通“疑难数据库(出版商)”最低求助积分说明 751845