转移
Wnt信号通路
癌症研究
微泡
小RNA
外体
生物
连环素
癌细胞
癌症
磷酸化
信号转导
化学
细胞生物学
生物化学
基因
遗传学
作者
Binbin Song,Guoxin Hou,Maoyi Xu,Ming Chen
标识
DOI:10.1016/j.cellsig.2024.111101
摘要
Breast cancer (BC) is a common cancer whose incidence continues to grow while its medical progress has stagnated. miRNAs are vital messengers that facilitate communications among different cancer cells. This study was to reveal the correlation of miR-122-3p expression with BC metastasis and Adriamycin (ADM) resistance and its mechanism of inhibiting BC metastasis. We found that expression of miR-122-3p is negatively correlated with BC metastasis and is lower in MCF-7/ADR cells. Overexpression of miR-122-3p in MCF-7/ADR cancer cells impairs their ability to migrate, invade, and stimulate blood vessel formation. Further research found that miR-122-3p directly binds to the 3’ UTR of GRK4, reducing the phosphorylation of LRP6, which activates the Wnt/β-catenin signaling pathway, facilitating BC development and metastasis. In addition, we observed that miR-122-3p is present in MCF-7 BCE cells, and treatment of MCF-7/ADR cells with MCF-7-derived exosomes, but not with exosomes from miR-122-3p-deficient MCF-7 cells, has identical effects to miR-122-3p overexpression. Data from xenograft experiments further suggest that excess miR-122-3p and MCF-7-derived exosomes inhibit the growth and metastasis of MCF-7/ADR cancer cells in vivo. In conclusion our data reveal that exosomal miR-122-3p may negatively regulate BC growth and metastasis, potentially serving as a diagnostic and druggable target for BC treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI