亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Toward real-time fracture detection on image logs using deep convolutional neural network YOLOv5

计算机科学 卷积神经网络 断裂(地质) 水力压裂 过程(计算) 催交 人工智能 理论(学习稳定性) 钻孔 深度学习 软件 石油工程 地质学 机器学习 岩土工程 工程类 系统工程 程序设计语言 操作系统
作者
Behnia Azizzadeh Mehmandost Olya,Reza Mohebian,Hassan Bagheri,Arzhan Mahdavi Hezaveh,Abolfazl Khan Mohammadi
出处
期刊:Interpretation [Society of Exploration Geophysicists]
卷期号:12 (2): SB9-SB18 被引量:2
标识
DOI:10.1190/int-2022-0104.1
摘要

Fractures in reservoirs have a profound impact on hydrocarbon production operations. The more accurately fractures can be detected, the better the exploration and production processes can be optimized. Therefore, fracture detection is an essential step in understanding the reservoir’s behavior and the stability of the wellbore. The conventional method for detecting fractures is image logging, which captures images of the borehole and fractures. However, the interpretation of these images is a laborious and subjective process that can lead to errors, inaccuracies, and inconsistencies, even when aided by software. Automating this process is essential for expediting operations, minimizing errors, and increasing efficiency. Although there have been some attempts to automate fracture detection, this paper takes a novel approach by proposing the use of YOLOv5 as a deep-learning (DL) tool to detect fractures automatically. YOLOv5 is unique in that it excels at speed, training, and detection while maintaining high accuracy in fracture detection. We observe that YOLOv5 can detect fractures in near real time with a high mean average precision of 98.2, requiring significantly less training than other DL algorithms. Furthermore, our approach overcomes the shortcomings of other fracture detection methods. Our method has many potential benefits, including reducing manual interpretation errors, decreasing the time required for fracture detection, and improving fracture detection accuracy. Our approach can be used in various reservoir engineering applications, such as hydraulic fracturing design, wellbore stability analysis, and reservoir simulation. By using this technique, the efficiency and accuracy of hydrocarbon exploration and production can be significantly improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
goooood发布了新的文献求助10
3秒前
桐桐应助lxy采纳,获得10
4秒前
爆米花应助FaFa采纳,获得10
6秒前
9秒前
秋裤大盗完成签到,获得积分20
10秒前
鹏虫虫发布了新的文献求助10
13秒前
慕青应助亚雄采纳,获得10
14秒前
14秒前
14秒前
FaFa发布了新的文献求助10
19秒前
lxy发布了新的文献求助10
19秒前
化工牛马完成签到,获得积分10
24秒前
ding应助2:38am采纳,获得10
25秒前
27秒前
小太阳发布了新的文献求助10
32秒前
34秒前
化工牛马发布了新的文献求助10
34秒前
bbb发布了新的文献求助10
35秒前
Hello应助小太阳采纳,获得10
38秒前
2:38am发布了新的文献求助10
39秒前
43秒前
GGKing发布了新的文献求助10
49秒前
鹏虫虫完成签到 ,获得积分10
53秒前
1分钟前
jack1511发布了新的文献求助10
1分钟前
科研通AI5应助Frank采纳,获得10
1分钟前
Leon应助KGYM采纳,获得10
1分钟前
Zyd完成签到,获得积分10
1分钟前
jack1511完成签到,获得积分10
1分钟前
1分钟前
我是老大应助科研通管家采纳,获得10
1分钟前
华仔应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Zyd发布了新的文献求助20
1分钟前
Frank发布了新的文献求助10
1分钟前
HS完成签到,获得积分10
1分钟前
lilinuusss完成签到,获得积分10
1分钟前
Jasper应助无醇橙汁采纳,获得30
1分钟前
静静想静静地静静完成签到 ,获得积分10
1分钟前
啊啊啊完成签到 ,获得积分10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3674271
求助须知:如何正确求助?哪些是违规求助? 3229696
关于积分的说明 9786736
捐赠科研通 2940240
什么是DOI,文献DOI怎么找? 1611741
邀请新用户注册赠送积分活动 761012
科研通“疑难数据库(出版商)”最低求助积分说明 736372