Integrating network pharmacology and animal experimental validation to investigate the action mechanism of oleanolic acid in obesity

齐墩果酸 小桶 过氧化物酶体增殖物激活受体 信号转导 转录因子 生物 药理学 生物信息学 受体 计算生物学 医学 细胞生物学 转录组 生物化学 基因表达 基因 病理 替代医学
作者
Tianfeng Liu,Jiliang Wang,Ying Tong,Lele Wu,Ying Xie,Ping He,Shujue Lin,Xuguang Hu
出处
期刊:Journal of Translational Medicine [Springer Nature]
卷期号:22 (1) 被引量:5
标识
DOI:10.1186/s12967-023-04840-x
摘要

Abstract Background Obesity, a condition associated with the development of widespread cardiovascular disease, metabolic disorders, and other health complications, has emerged as a significant global health issue. Oleanolic acid (OA), a pentacyclic triterpenoid compound that is widely distributed in various natural plants, has demonstrated potential anti-inflammatory and anti-atherosclerotic properties. However, the mechanism by which OA fights obesity has not been well studied. Method Network pharmacology was utilized to search for potential targets and pathways of OA against obesity. Molecular docking and molecular dynamics simulations were utilized to validate the interaction of OA with core targets, and an animal model of obesity induced by high-fat eating was then employed to confirm the most central of these targets. Results The network pharmacology study thoroughly examined 42 important OA targets for the treatment of obesity. The key biological processes (BP), cellular components (CC), and molecular functions (MF) of OA for anti-obesity were identified using GO enrichment analysis, including intracellular receptor signaling, intracellular steroid hormone receptor signaling, chromatin, nucleoplasm, receptor complex, endoplasmic reticulum membrane, and RNA polymerase II transcription Factor Activity. The KEGG/DAVID database enrichment study found that metabolic pathways, PPAR signaling pathways, cancer pathways/PPAR signaling pathways, insulin resistance, and ovarian steroidogenesis all play essential roles in the treatment of obesity and OA. The protein-protein interaction (PPI) network was used to screen nine main targets: PPARG, PPARA, MAPK3, NR3C1, PTGS2, CYP19A1, CNR1, HSD11B1, and AGTR1. Using molecular docking technology, the possible binding mechanism and degree of binding between OA and each important target were validated, demonstrating that OA has a good binding potential with each target. The molecular dynamics simulation’s Root Mean Square Deviation (RMSD), and Radius of Gyration (Rg) further demonstrated that OA has strong binding stability with each target. Additional animal studies confirmed the significance of the core target PPARG and the core pathway PPAR signaling pathway in OA anti-obesity. Conclusion Overall, our study utilized a multifaceted approach to investigate the value and mechanisms of OA in treating obesity, thereby providing a novel foundation for the identification and development of natural drug treatments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
赘婿应助包包采纳,获得10
2秒前
Owen应助wer采纳,获得10
2秒前
123456完成签到,获得积分10
2秒前
Hello应助shu_yhz采纳,获得10
4秒前
小翟不宅发布了新的文献求助10
4秒前
kk驳回了morris应助
4秒前
chen完成签到,获得积分20
4秒前
乐乐完成签到,获得积分10
5秒前
tjseilcy发布了新的文献求助10
5秒前
HIT_C完成签到,获得积分10
6秒前
刘大力发布了新的文献求助10
6秒前
7秒前
8秒前
8秒前
领导范儿应助研友_8R5X3Z采纳,获得10
9秒前
10秒前
ChenChen发布了新的文献求助10
11秒前
背后大白发布了新的文献求助10
12秒前
12秒前
乐观的柏柳完成签到,获得积分20
12秒前
天天快乐应助www采纳,获得10
13秒前
GMX-Leo完成签到,获得积分10
13秒前
14秒前
15秒前
李学文啊发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
17秒前
GMX-Leo发布了新的文献求助10
17秒前
Metoprolol完成签到,获得积分10
18秒前
丘比特应助深情的迎海采纳,获得10
18秒前
wer发布了新的文献求助10
19秒前
JamesPei应助小肥羊采纳,获得10
19秒前
开朗的菠萝头完成签到,获得积分10
19秒前
慕青应助科研通管家采纳,获得10
19秒前
20秒前
在水一方应助科研通管家采纳,获得10
20秒前
FashionBoy应助科研通管家采纳,获得10
20秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222324
求助须知:如何正确求助?哪些是违规求助? 2870919
关于积分的说明 8173063
捐赠科研通 2537948
什么是DOI,文献DOI怎么找? 1370068
科研通“疑难数据库(出版商)”最低求助积分说明 645666
邀请新用户注册赠送积分活动 619475