Line image sensor-based colony fingerprinting system for rapid pathogenic bacteria identification

人工智能 计算机科学 鉴定(生物学) 指纹(计算) 培养皿 菌落 可扩展性 计算机视觉 模式识别(心理学) 生物 微生物学 细菌 数据库 植物 遗传学
作者
Hikaru Tago,Yoshiaki Maeda,Yusuke Tanaka,Hiroya Kohketsu,Tae-Kyu Lim,Manabu Harada,Tomoko Yoshino,Tadashi Matsunaga,Tsuyoshi Tanaka
出处
期刊:Biosensors and Bioelectronics [Elsevier]
卷期号:249: 116006-116006 被引量:2
标识
DOI:10.1016/j.bios.2024.116006
摘要

The rapid identification of pathogenic bacteria is crucial across various industries, including food or beverage manufacturing. Bacterial microcolony image-based classification has emerged as a promising approach to expedite identification, automate inspections, and reduce costs. However, conventional imaging methods have significant practical limitations, namely low throughput caused by the limited imaging range and slow imaging speed. To address these challenges, we developed an imaging system based on a line image sensor for rapid and wide-field imaging compared to existing colony imaging methods. This system can image a standard Petri dish (92 mm in diameter) completely within 22 s, successfully acquiring bacterial microcolony images. This process yielded a set of discrimination parameters termed as colony fingerprints, which were employed for machine learning. We demonstrated the performance of our system by identifying Staphylococcus aureus in food products using a machine learning model trained on a colony fingerprint dataset of 15 species from 9 genera, including foodborne pathogens. While conventional mass spectrometry-based methods require 24 h of incubation, our colony fingerprinting approach achieved 96% accuracy in just 10 h of incubation. Line image sensor offer high imaging speeds and scalability, allowing for swift and straightforward microbiological testing, eliminating the need for specialized expertise and overcoming the limitations of conventional methods. This innovation marks a transformative shift in industrial applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浅蓝色发布了新的文献求助30
刚刚
大模型应助禾之采纳,获得10
1秒前
jhcraul完成签到,获得积分10
1秒前
科研通AI6应助无情剑愁采纳,获得10
1秒前
健康的涔发布了新的文献求助10
1秒前
超级冬瓜完成签到,获得积分20
1秒前
乐乐应助LQY采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
星辰大海应助风声亦寒采纳,获得10
3秒前
留白发布了新的文献求助10
3秒前
orixero应助淡淡从安采纳,获得10
3秒前
3秒前
陈文文发布了新的文献求助10
4秒前
艾莎莎5114完成签到,获得积分10
4秒前
jhcraul发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
7秒前
8秒前
爆米花应助阿辰采纳,获得10
8秒前
泷生发布了新的文献求助10
8秒前
浮水发布了新的文献求助10
10秒前
陈文文完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
咿呀咿呀哟应助lielie采纳,获得10
11秒前
汉堡包应助lielie采纳,获得10
11秒前
英俊的铭应助yyjm采纳,获得10
12秒前
RED发布了新的文献求助10
12秒前
12秒前
12秒前
逸风望完成签到,获得积分10
12秒前
12秒前
zho发布了新的文献求助10
13秒前
13秒前
科研通AI6应助蓝朱采纳,获得10
14秒前
Ava应助月落云何起采纳,获得10
14秒前
科研通AI6应助蓝朱采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577176
求助须知:如何正确求助?哪些是违规求助? 4662454
关于积分的说明 14741703
捐赠科研通 4603093
什么是DOI,文献DOI怎么找? 2526103
邀请新用户注册赠送积分活动 1495999
关于科研通互助平台的介绍 1465483