Line image sensor-based colony fingerprinting system for rapid pathogenic bacteria identification

人工智能 计算机科学 鉴定(生物学) 指纹(计算) 培养皿 菌落 可扩展性 计算机视觉 模式识别(心理学) 生物 微生物学 细菌 数据库 植物 遗传学
作者
Hikaru Tago,Yoshiaki Maeda,Yusuke Tanaka,Hiroya Kohketsu,Tae-Kyu Lim,Manabu Harada,Tomoko Yoshino,Tadashi Matsunaga,Tsuyoshi Tanaka
出处
期刊:Biosensors and Bioelectronics [Elsevier]
卷期号:249: 116006-116006 被引量:2
标识
DOI:10.1016/j.bios.2024.116006
摘要

The rapid identification of pathogenic bacteria is crucial across various industries, including food or beverage manufacturing. Bacterial microcolony image-based classification has emerged as a promising approach to expedite identification, automate inspections, and reduce costs. However, conventional imaging methods have significant practical limitations, namely low throughput caused by the limited imaging range and slow imaging speed. To address these challenges, we developed an imaging system based on a line image sensor for rapid and wide-field imaging compared to existing colony imaging methods. This system can image a standard Petri dish (92 mm in diameter) completely within 22 s, successfully acquiring bacterial microcolony images. This process yielded a set of discrimination parameters termed as colony fingerprints, which were employed for machine learning. We demonstrated the performance of our system by identifying Staphylococcus aureus in food products using a machine learning model trained on a colony fingerprint dataset of 15 species from 9 genera, including foodborne pathogens. While conventional mass spectrometry-based methods require 24 h of incubation, our colony fingerprinting approach achieved 96% accuracy in just 10 h of incubation. Line image sensor offer high imaging speeds and scalability, allowing for swift and straightforward microbiological testing, eliminating the need for specialized expertise and overcoming the limitations of conventional methods. This innovation marks a transformative shift in industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
bmhs2017应助廖丽文采纳,获得10
1秒前
脑洞疼应助迅速哈密瓜采纳,获得10
1秒前
1秒前
ding应助Ninico采纳,获得10
1秒前
小思发布了新的文献求助10
2秒前
XMY完成签到 ,获得积分10
3秒前
是小段呀完成签到 ,获得积分10
3秒前
搜集达人应助正直的半梅采纳,获得10
4秒前
秋月黄完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
6秒前
在水一方应助舒心盼海采纳,获得10
6秒前
6秒前
znt完成签到,获得积分20
7秒前
咖飞完成签到,获得积分10
7秒前
激昂的千秋完成签到,获得积分10
7秒前
7秒前
7秒前
小张同学完成签到,获得积分10
8秒前
刘均珺发布了新的文献求助10
8秒前
8秒前
廖丽文完成签到,获得积分20
9秒前
9秒前
无花果应助momowang采纳,获得10
9秒前
wise111发布了新的文献求助10
9秒前
10秒前
10秒前
FashionBoy应助spwan采纳,获得10
11秒前
ji发布了新的文献求助10
11秒前
大模型应助暴富采纳,获得10
11秒前
pepsisery完成签到,获得积分10
11秒前
傲娇如天发布了新的文献求助10
11秒前
涪城的涪发布了新的文献求助10
11秒前
寒来暑往发布了新的文献求助10
11秒前
Li完成签到,获得积分10
12秒前
852应助神勇的天问采纳,获得10
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5410122
求助须知:如何正确求助?哪些是违规求助? 4527656
关于积分的说明 14112011
捐赠科研通 4442051
什么是DOI,文献DOI怎么找? 2437805
邀请新用户注册赠送积分活动 1429747
关于科研通互助平台的介绍 1407769