Line image sensor-based colony fingerprinting system for rapid pathogenic bacteria identification

人工智能 计算机科学 鉴定(生物学) 指纹(计算) 培养皿 菌落 可扩展性 计算机视觉 模式识别(心理学) 生物 微生物学 细菌 数据库 遗传学 植物
作者
Hikaru Tago,Yoshiaki Maeda,Yusuke Tanaka,Hiroya Kohketsu,Tae-Kyu Lim,Manabu Harada,Tomoko Yoshino,Tadashi Matsunaga,Tsuyoshi Tanaka
出处
期刊:Biosensors and Bioelectronics [Elsevier BV]
卷期号:249: 116006-116006 被引量:2
标识
DOI:10.1016/j.bios.2024.116006
摘要

The rapid identification of pathogenic bacteria is crucial across various industries, including food or beverage manufacturing. Bacterial microcolony image-based classification has emerged as a promising approach to expedite identification, automate inspections, and reduce costs. However, conventional imaging methods have significant practical limitations, namely low throughput caused by the limited imaging range and slow imaging speed. To address these challenges, we developed an imaging system based on a line image sensor for rapid and wide-field imaging compared to existing colony imaging methods. This system can image a standard Petri dish (92 mm in diameter) completely within 22 s, successfully acquiring bacterial microcolony images. This process yielded a set of discrimination parameters termed as colony fingerprints, which were employed for machine learning. We demonstrated the performance of our system by identifying Staphylococcus aureus in food products using a machine learning model trained on a colony fingerprint dataset of 15 species from 9 genera, including foodborne pathogens. While conventional mass spectrometry-based methods require 24 h of incubation, our colony fingerprinting approach achieved 96% accuracy in just 10 h of incubation. Line image sensor offer high imaging speeds and scalability, allowing for swift and straightforward microbiological testing, eliminating the need for specialized expertise and overcoming the limitations of conventional methods. This innovation marks a transformative shift in industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xluo215完成签到,获得积分10
1秒前
123完成签到,获得积分10
1秒前
传奇3应助木讷山采纳,获得10
1秒前
袁不评发布了新的文献求助30
1秒前
junzhu完成签到,获得积分10
2秒前
科研奇男子完成签到,获得积分10
2秒前
小秋完成签到,获得积分10
2秒前
2秒前
3秒前
stars发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
JamesPei应助孤独盼望采纳,获得10
6秒前
6秒前
7秒前
酷波er应助鲤鱼大神采纳,获得10
7秒前
Pig-prodigy完成签到,获得积分10
8秒前
kuma发布了新的文献求助30
8秒前
8秒前
8秒前
8秒前
小二郎应助等你下课采纳,获得10
9秒前
大厨懒洋洋完成签到,获得积分10
9秒前
Grondwet完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
10秒前
10秒前
10秒前
nan发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
11秒前
斯文败类应助一步一步0617采纳,获得10
12秒前
安静店员完成签到,获得积分10
12秒前
12秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979916
求助须知:如何正确求助?哪些是违规求助? 3524003
关于积分的说明 11219349
捐赠科研通 3261424
什么是DOI,文献DOI怎么找? 1800654
邀请新用户注册赠送积分活动 879239
科研通“疑难数据库(出版商)”最低求助积分说明 807214