Line image sensor-based colony fingerprinting system for rapid pathogenic bacteria identification

人工智能 计算机科学 鉴定(生物学) 指纹(计算) 培养皿 菌落 可扩展性 计算机视觉 模式识别(心理学) 生物 微生物学 细菌 数据库 遗传学 植物
作者
Hikaru Tago,Yoshiaki Maeda,Yusuke Tanaka,Hiroya Kohketsu,Tae-Kyu Lim,Manabu Harada,Tomoko Yoshino,Tadashi Matsunaga,Tsuyoshi Tanaka
出处
期刊:Biosensors and Bioelectronics [Elsevier BV]
卷期号:249: 116006-116006 被引量:2
标识
DOI:10.1016/j.bios.2024.116006
摘要

The rapid identification of pathogenic bacteria is crucial across various industries, including food or beverage manufacturing. Bacterial microcolony image-based classification has emerged as a promising approach to expedite identification, automate inspections, and reduce costs. However, conventional imaging methods have significant practical limitations, namely low throughput caused by the limited imaging range and slow imaging speed. To address these challenges, we developed an imaging system based on a line image sensor for rapid and wide-field imaging compared to existing colony imaging methods. This system can image a standard Petri dish (92 mm in diameter) completely within 22 s, successfully acquiring bacterial microcolony images. This process yielded a set of discrimination parameters termed as colony fingerprints, which were employed for machine learning. We demonstrated the performance of our system by identifying Staphylococcus aureus in food products using a machine learning model trained on a colony fingerprint dataset of 15 species from 9 genera, including foodborne pathogens. While conventional mass spectrometry-based methods require 24 h of incubation, our colony fingerprinting approach achieved 96% accuracy in just 10 h of incubation. Line image sensor offer high imaging speeds and scalability, allowing for swift and straightforward microbiological testing, eliminating the need for specialized expertise and overcoming the limitations of conventional methods. This innovation marks a transformative shift in industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
帅气绮露发布了新的文献求助10
刚刚
xxx完成签到,获得积分10
刚刚
刘红璐完成签到,获得积分10
刚刚
1秒前
量子星尘发布了新的文献求助10
1秒前
北还北完成签到,获得积分10
1秒前
Qinghua发布了新的文献求助10
1秒前
想瘦的海豹完成签到,获得积分10
2秒前
helpme完成签到,获得积分10
2秒前
2秒前
舟舟完成签到 ,获得积分10
3秒前
5552222完成签到,获得积分10
5秒前
柚子完成签到,获得积分10
5秒前
揽星完成签到,获得积分10
5秒前
dreamer完成签到 ,获得积分10
6秒前
科研通AI5应助www采纳,获得10
6秒前
Hmzh完成签到,获得积分10
6秒前
6秒前
机智的灵发布了新的文献求助10
6秒前
6秒前
二月why完成签到,获得积分10
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
小饼干完成签到,获得积分10
7秒前
不钓鱼完成签到,获得积分10
7秒前
赵宝正完成签到,获得积分10
7秒前
jluzz完成签到,获得积分10
7秒前
独特凡松发布了新的文献求助10
8秒前
哭泣的缘郡完成签到 ,获得积分10
8秒前
mahuahua完成签到,获得积分10
8秒前
科研通AI5应助美满一斩采纳,获得10
8秒前
Fiona完成签到 ,获得积分10
8秒前
8秒前
dong完成签到,获得积分20
8秒前
关关难过关关过完成签到,获得积分10
9秒前
清酒少年游完成签到,获得积分10
9秒前
10秒前
11秒前
11秒前
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661418
求助须知:如何正确求助?哪些是违规求助? 3222442
关于积分的说明 9745787
捐赠科研通 2932029
什么是DOI,文献DOI怎么找? 1605426
邀请新用户注册赠送积分活动 757898
科研通“疑难数据库(出版商)”最低求助积分说明 734576