电解质
阳极
无机化学
碱金属
化学
阴极
法拉第效率
膜
碳酸乙烯酯
乙烯
离子交换
碳酸盐
氢
电极
离子
催化作用
有机化学
生物化学
物理化学
作者
Xiaojie She,Ling-Ling Zhai,Yifei Wang,Pei Xiong,Molly Meng‐Jung Li,Tai‐Sing Wu,Man‐Chung Wong,Xuyun Guo,Zhihang Xu,Mengxia Ji,Hui Xu,Ye Zhu,Shik Chi Edman Tsang,Shu Ping Lau
出处
期刊:Nature Energy
[Springer Nature]
日期:2024-01-05
卷期号:9 (1): 81-91
被引量:19
标识
DOI:10.1038/s41560-023-01415-4
摘要
Abstract Electrocatalytic CO 2 reduction at near-ambient temperatures requires a complex inventory of protons, hydroxyls, carbonate ions and alkali-metal ions at the cathode and anode to be managed, necessitating the use of ion-selective membranes to regulate pH. Anion-exchange membranes provide an alkaline environment, allowing CO 2 reduction at low cell voltages and suppression of hydrogen evolution while maintaining high conversion efficiencies. However, the local alkaline conditions and the presence of alkali cations lead to problematic carbonate formation and even precipitation. Here we report a pure-water-fed (alkali-cation-free) membrane–electrode–assembly system for CO 2 reduction to ethylene by integrating an anion-exchange membrane and a proton-exchange membrane at the cathode and anode side, respectively, under forward bias. This system effectively suppresses carbonate formation and prevents salt precipitation. A scaled-up electrolyser stack achieved over 1,000 h stability without CO 2 and electrolyte losses and with 50% Faradaic efficiency towards ethylene at a total current of 10 A.
科研通智能强力驱动
Strongly Powered by AbleSci AI