清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

LEVER: Online Adaptive Sequence Learning Framework for High-Frequency Trading

计算机科学 高频交易 深度学习 算法交易 自编码 人工智能 利用 机器学习 交易策略 信号(编程语言) 计量经济学 计算机安全 金融经济学 经济 程序设计语言
作者
Zixuan Yuan,Junming Liu,Haoyi Zhou,Denghui Zhang,Hao Liu,Nengjun Zhu,Hui Xiong
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:1
标识
DOI:10.1109/tkde.2023.3336185
摘要

Recent years have witnessed the fast development of deep learning techniques in quantitative trading. It still remains unclear how to exploit deep learning techniques to improve high-frequency trading (HFT). Indeed, there are two emerging challenges for the use of deep learning for HFT: (i) how to quantify fast-changing market conditions for tick-level signal prediction; (ii) how to establish a unified trading paradigm for different securities of diverse market conditions and severe signal sparsity. To this end, in this paper, we propose an Online Adaptive Sequence Learning (LEVER) framework, which consists of two distinct components to predict the HFT signals at the tick level for a variety of securities simultaneously. Specifically, we start with a single learner that adopts an encoder-decoder architecture for each security-based HFT signal prediction. In this single learner, an ordered encoder module first captures the variability patterns of the security's price curve by encoding the input indicator sequence from different time ranges. An unordered decoder module then outlines the pivot points of the price curve as support and resistance levels to quantify the market status. Based on the measured market condition, a prediction module further approximates the impacts of upcoming security data as the potential market momentum to detect the tick-level trading signals. To overcome the computational challenges and signal sparsity posed by online HFT for multiple securities, we develop a competitive active-meta learning paradigm to enhance the signal learners' learning efficiency for online implementation. Finally, extensive experiments on real-world stock market data demonstrate the effectiveness of our deployed LEVER for improving the performances of the existing industry method by 0.27 in the Sharpe ratio and by 0.09% in a transaction-based return.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DHW1703701完成签到,获得积分10
9秒前
fishway发布了新的文献求助10
10秒前
binfo完成签到,获得积分10
23秒前
jyy发布了新的文献求助10
26秒前
晟sheng完成签到 ,获得积分10
28秒前
打打应助予秋采纳,获得10
36秒前
fishway发布了新的文献求助10
40秒前
予秋完成签到,获得积分10
45秒前
量子星尘发布了新的文献求助10
48秒前
fishway发布了新的文献求助10
51秒前
51秒前
予秋发布了新的文献求助10
57秒前
闵凝竹完成签到 ,获得积分0
57秒前
星辰大海应助研友_nVNBVn采纳,获得10
1分钟前
可爱的函函应助fishway采纳,获得10
1分钟前
风清扬发布了新的文献求助10
1分钟前
1分钟前
彭于晏应助keke采纳,获得10
1分钟前
1分钟前
1分钟前
简单的山晴完成签到,获得积分10
1分钟前
keke完成签到,获得积分10
1分钟前
keke发布了新的文献求助10
1分钟前
1分钟前
殷勤的涵梅完成签到 ,获得积分10
1分钟前
gengsumin完成签到,获得积分10
1分钟前
fishway发布了新的文献求助10
1分钟前
1分钟前
fishway发布了新的文献求助10
1分钟前
姚芭蕉完成签到 ,获得积分0
1分钟前
超帅的开山完成签到 ,获得积分20
1分钟前
秦宇航完成签到 ,获得积分10
1分钟前
Sunny完成签到,获得积分10
1分钟前
Akim应助斑驳采纳,获得10
2分钟前
fishway发布了新的文献求助30
2分钟前
daixan89完成签到 ,获得积分10
2分钟前
2分钟前
斑驳发布了新的文献求助10
2分钟前
李爱国应助QueenQ采纳,获得10
2分钟前
雪山飞龙发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5706722
求助须知:如何正确求助?哪些是违规求助? 5177008
关于积分的说明 15247274
捐赠科研通 4860132
什么是DOI,文献DOI怎么找? 2608426
邀请新用户注册赠送积分活动 1559302
关于科研通互助平台的介绍 1517126