LEVER: Online Adaptive Sequence Learning Framework for High-Frequency Trading

计算机科学 高频交易 深度学习 算法交易 自编码 人工智能 利用 机器学习 交易策略 信号(编程语言) 计量经济学 计算机安全 金融经济学 经济 程序设计语言
作者
Zixuan Yuan,Junming Liu,Haoyi Zhou,Denghui Zhang,Hao Liu,Nengjun Zhu,Hui Xiong
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:: 1-13 被引量:1
标识
DOI:10.1109/tkde.2023.3336185
摘要

Recent years have witnessed the fast development of deep learning techniques in quantitative trading. It still remains unclear how to exploit deep learning techniques to improve high-frequency trading (HFT). Indeed, there are two emerging challenges for the use of deep learning for HFT: (i) how to quantify fast-changing market conditions for tick-level signal prediction; (ii) how to establish a unified trading paradigm for different securities of diverse market conditions and severe signal sparsity. To this end, in this paper, we propose an Online Adaptive Sequence Learning (LEVER) framework, which consists of two distinct components to predict the HFT signals at the tick level for a variety of securities simultaneously. Specifically, we start with a single learner that adopts an encoder-decoder architecture for each security-based HFT signal prediction. In this single learner, an ordered encoder module first captures the variability patterns of the security's price curve by encoding the input indicator sequence from different time ranges. An unordered decoder module then outlines the pivot points of the price curve as support and resistance levels to quantify the market status. Based on the measured market condition, a prediction module further approximates the impacts of upcoming security data as the potential market momentum to detect the tick-level trading signals. To overcome the computational challenges and signal sparsity posed by online HFT for multiple securities, we develop a competitive active-meta learning paradigm to enhance the signal learners' learning efficiency for online implementation. Finally, extensive experiments on real-world stock market data demonstrate the effectiveness of our deployed LEVER for improving the performances of the existing industry method by 0.27 in the Sharpe ratio and by 0.09% in a transaction-based return.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
123发布了新的文献求助20
2秒前
小懒完成签到,获得积分10
3秒前
3秒前
ChenYX发布了新的文献求助40
5秒前
5秒前
5秒前
洁净平卉发布了新的文献求助10
5秒前
mumu完成签到,获得积分10
6秒前
善学以致用应助刚子采纳,获得10
8秒前
酷波er应助大米粒采纳,获得10
8秒前
shime发布了新的文献求助10
8秒前
8秒前
Terence发布了新的文献求助10
9秒前
maodou发布了新的文献求助10
9秒前
Orange应助effort采纳,获得10
9秒前
091完成签到 ,获得积分10
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
厚礼蟹发布了新的文献求助10
11秒前
聪明邪欢完成签到,获得积分10
12秒前
13秒前
洁净平卉完成签到,获得积分10
13秒前
风中音响发布了新的文献求助10
13秒前
zhangxinyi发布了新的文献求助10
14秒前
miyano完成签到,获得积分10
14秒前
15秒前
17秒前
JamesPei应助maodou采纳,获得10
17秒前
WWW发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
19秒前
轻松面包完成签到,获得积分10
20秒前
20秒前
20秒前
田様应助苗苗043采纳,获得10
21秒前
脑洞疼应助风中的嚣采纳,获得10
21秒前
轻松面包发布了新的文献求助10
23秒前
ChouNen完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Ride comfort analysis of hydro-pneumatic suspension considering variable damping matched with dynamitic load 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4589978
求助须知:如何正确求助?哪些是违规求助? 4004982
关于积分的说明 12399902
捐赠科研通 3681978
什么是DOI,文献DOI怎么找? 2029363
邀请新用户注册赠送积分活动 1062975
科研通“疑难数据库(出版商)”最低求助积分说明 948558