LEVER: Online Adaptive Sequence Learning Framework for High-Frequency Trading

计算机科学 高频交易 深度学习 算法交易 自编码 人工智能 利用 机器学习 交易策略 信号(编程语言) 计量经济学 计算机安全 金融经济学 经济 程序设计语言
作者
Zixuan Yuan,Junming Liu,Haoyi Zhou,Denghui Zhang,Hao Liu,Nengjun Zhu,Hui Xiong
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:1
标识
DOI:10.1109/tkde.2023.3336185
摘要

Recent years have witnessed the fast development of deep learning techniques in quantitative trading. It still remains unclear how to exploit deep learning techniques to improve high-frequency trading (HFT). Indeed, there are two emerging challenges for the use of deep learning for HFT: (i) how to quantify fast-changing market conditions for tick-level signal prediction; (ii) how to establish a unified trading paradigm for different securities of diverse market conditions and severe signal sparsity. To this end, in this paper, we propose an Online Adaptive Sequence Learning (LEVER) framework, which consists of two distinct components to predict the HFT signals at the tick level for a variety of securities simultaneously. Specifically, we start with a single learner that adopts an encoder-decoder architecture for each security-based HFT signal prediction. In this single learner, an ordered encoder module first captures the variability patterns of the security's price curve by encoding the input indicator sequence from different time ranges. An unordered decoder module then outlines the pivot points of the price curve as support and resistance levels to quantify the market status. Based on the measured market condition, a prediction module further approximates the impacts of upcoming security data as the potential market momentum to detect the tick-level trading signals. To overcome the computational challenges and signal sparsity posed by online HFT for multiple securities, we develop a competitive active-meta learning paradigm to enhance the signal learners' learning efficiency for online implementation. Finally, extensive experiments on real-world stock market data demonstrate the effectiveness of our deployed LEVER for improving the performances of the existing industry method by 0.27 in the Sharpe ratio and by 0.09% in a transaction-based return.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
哈哈哈哈哈完成签到,获得积分10
1秒前
2秒前
开心超人发布了新的文献求助10
2秒前
风声亦寒发布了新的文献求助10
2秒前
顾矜应助Miriammmmm采纳,获得10
2秒前
CodeCraft应助李晶晶采纳,获得10
3秒前
3秒前
4秒前
LQY完成签到,获得积分20
5秒前
可爱的函函应助lemon采纳,获得20
6秒前
7秒前
小雒雒完成签到,获得积分10
7秒前
香蕉觅云应助陈文文采纳,获得10
7秒前
LQY发布了新的文献求助10
8秒前
超级冬瓜发布了新的文献求助10
8秒前
8秒前
希望天下0贩的0应助AA1采纳,获得10
8秒前
代桃完成签到,获得积分10
9秒前
胡一一关注了科研通微信公众号
9秒前
10秒前
10秒前
邵洋发布了新的文献求助10
11秒前
TulIP完成签到,获得积分10
11秒前
逢尘化雪完成签到,获得积分10
12秒前
12秒前
13秒前
FOX完成签到,获得积分10
13秒前
13秒前
学学术术小小白白完成签到,获得积分10
14秒前
14秒前
李晶晶发布了新的文献求助10
14秒前
14秒前
15秒前
kai9712完成签到,获得积分10
15秒前
年轻的老人完成签到 ,获得积分10
16秒前
浅蓝色发布了新的文献求助30
16秒前
大模型应助禾之采纳,获得10
17秒前
jhcraul完成签到,获得积分10
17秒前
科研通AI6应助无情剑愁采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577176
求助须知:如何正确求助?哪些是违规求助? 4662454
关于积分的说明 14741703
捐赠科研通 4603093
什么是DOI,文献DOI怎么找? 2526103
邀请新用户注册赠送积分活动 1495999
关于科研通互助平台的介绍 1465483