LEVER: Online Adaptive Sequence Learning Framework for High-Frequency Trading

计算机科学 高频交易 深度学习 算法交易 自编码 人工智能 利用 机器学习 交易策略 信号(编程语言) 计量经济学 计算机安全 金融经济学 经济 程序设计语言
作者
Zixuan Yuan,Junming Liu,Haoyi Zhou,Denghui Zhang,Hao Liu,Nengjun Zhu,Hui Xiong
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:: 1-13 被引量:1
标识
DOI:10.1109/tkde.2023.3336185
摘要

Recent years have witnessed the fast development of deep learning techniques in quantitative trading. It still remains unclear how to exploit deep learning techniques to improve high-frequency trading (HFT). Indeed, there are two emerging challenges for the use of deep learning for HFT: (i) how to quantify fast-changing market conditions for tick-level signal prediction; (ii) how to establish a unified trading paradigm for different securities of diverse market conditions and severe signal sparsity. To this end, in this paper, we propose an Online Adaptive Sequence Learning (LEVER) framework, which consists of two distinct components to predict the HFT signals at the tick level for a variety of securities simultaneously. Specifically, we start with a single learner that adopts an encoder-decoder architecture for each security-based HFT signal prediction. In this single learner, an ordered encoder module first captures the variability patterns of the security's price curve by encoding the input indicator sequence from different time ranges. An unordered decoder module then outlines the pivot points of the price curve as support and resistance levels to quantify the market status. Based on the measured market condition, a prediction module further approximates the impacts of upcoming security data as the potential market momentum to detect the tick-level trading signals. To overcome the computational challenges and signal sparsity posed by online HFT for multiple securities, we develop a competitive active-meta learning paradigm to enhance the signal learners' learning efficiency for online implementation. Finally, extensive experiments on real-world stock market data demonstrate the effectiveness of our deployed LEVER for improving the performances of the existing industry method by 0.27 in the Sharpe ratio and by 0.09% in a transaction-based return.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿V完成签到,获得积分10
刚刚
1秒前
luna完成签到,获得积分10
1秒前
iNk应助lu采纳,获得10
1秒前
阿yueyue完成签到 ,获得积分10
1秒前
eleven发布了新的文献求助10
2秒前
木木完成签到,获得积分10
3秒前
贪玩的万仇完成签到,获得积分10
3秒前
橘子石榴完成签到 ,获得积分10
3秒前
猫好好完成签到,获得积分10
5秒前
修好世界完成签到,获得积分10
5秒前
Lau完成签到,获得积分10
5秒前
liu完成签到,获得积分10
5秒前
mj完成签到,获得积分10
6秒前
Time完成签到,获得积分10
7秒前
完美世界应助炸药采纳,获得10
7秒前
eleven完成签到,获得积分20
8秒前
9秒前
wyuanhu完成签到,获得积分10
9秒前
朱凌娇完成签到,获得积分10
10秒前
自由的鹏涛完成签到,获得积分20
10秒前
10秒前
大个应助kk采纳,获得30
10秒前
汏流萤完成签到,获得积分10
10秒前
10秒前
大方小松完成签到,获得积分10
11秒前
11秒前
顾矜应助Aminoacid采纳,获得10
11秒前
12秒前
zyyyy完成签到,获得积分10
12秒前
温润如玉坤完成签到,获得积分10
13秒前
十一完成签到,获得积分20
13秒前
cm完成签到,获得积分10
14秒前
一台小钢炮完成签到,获得积分10
15秒前
15秒前
Wguan发布了新的文献求助20
15秒前
英俊的铭应助asdf采纳,获得10
15秒前
我是老大应助123采纳,获得10
16秒前
陨落的繁星完成签到,获得积分10
16秒前
十一发布了新的文献求助10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968608
求助须知:如何正确求助?哪些是违规求助? 3513486
关于积分的说明 11168243
捐赠科研通 3248926
什么是DOI,文献DOI怎么找? 1794540
邀请新用户注册赠送积分活动 875188
科研通“疑难数据库(出版商)”最低求助积分说明 804676