已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

LEVER: Online Adaptive Sequence Learning Framework for High-Frequency Trading

计算机科学 高频交易 深度学习 算法交易 自编码 人工智能 利用 机器学习 交易策略 信号(编程语言) 计量经济学 计算机安全 金融经济学 经济 程序设计语言
作者
Zixuan Yuan,Junming Liu,Haoyi Zhou,Denghui Zhang,Hao Liu,Nengjun Zhu,Hui Xiong
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:1
标识
DOI:10.1109/tkde.2023.3336185
摘要

Recent years have witnessed the fast development of deep learning techniques in quantitative trading. It still remains unclear how to exploit deep learning techniques to improve high-frequency trading (HFT). Indeed, there are two emerging challenges for the use of deep learning for HFT: (i) how to quantify fast-changing market conditions for tick-level signal prediction; (ii) how to establish a unified trading paradigm for different securities of diverse market conditions and severe signal sparsity. To this end, in this paper, we propose an Online Adaptive Sequence Learning (LEVER) framework, which consists of two distinct components to predict the HFT signals at the tick level for a variety of securities simultaneously. Specifically, we start with a single learner that adopts an encoder-decoder architecture for each security-based HFT signal prediction. In this single learner, an ordered encoder module first captures the variability patterns of the security's price curve by encoding the input indicator sequence from different time ranges. An unordered decoder module then outlines the pivot points of the price curve as support and resistance levels to quantify the market status. Based on the measured market condition, a prediction module further approximates the impacts of upcoming security data as the potential market momentum to detect the tick-level trading signals. To overcome the computational challenges and signal sparsity posed by online HFT for multiple securities, we develop a competitive active-meta learning paradigm to enhance the signal learners' learning efficiency for online implementation. Finally, extensive experiments on real-world stock market data demonstrate the effectiveness of our deployed LEVER for improving the performances of the existing industry method by 0.27 in the Sharpe ratio and by 0.09% in a transaction-based return.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YHY发布了新的文献求助10
刚刚
刚刚
YinWenjie完成签到,获得积分10
4秒前
一二发布了新的文献求助10
5秒前
5秒前
Ambition完成签到,获得积分10
7秒前
Enso完成签到 ,获得积分10
7秒前
ZHAO发布了新的文献求助10
8秒前
narcissus完成签到,获得积分20
9秒前
9秒前
Orange应助fanfan采纳,获得10
9秒前
weilian完成签到,获得积分10
10秒前
ysywenyao关注了科研通微信公众号
10秒前
华仔应助南北采纳,获得20
11秒前
孙哈哈完成签到 ,获得积分10
12秒前
babyally完成签到,获得积分20
13秒前
柚哦完成签到 ,获得积分10
14秒前
梦露露发布了新的文献求助10
14秒前
17秒前
ZHAO完成签到,获得积分10
17秒前
17秒前
张匀继完成签到 ,获得积分10
18秒前
JAJATAO完成签到,获得积分10
19秒前
洋了个洋发布了新的文献求助10
19秒前
大模型应助干净问枫采纳,获得10
19秒前
Ccceve完成签到,获得积分10
22秒前
jiang1发布了新的文献求助10
22秒前
dwaekki发布了新的文献求助10
23秒前
tuanheqi发布了新的文献求助100
23秒前
在木星发布了新的文献求助10
23秒前
坚定飞绿发布了新的文献求助10
24秒前
细心难摧完成签到 ,获得积分10
24秒前
香蕉觅云应助一二采纳,获得10
25秒前
冷水完成签到,获得积分10
25秒前
云苓落葵发布了新的文献求助10
26秒前
馨达子完成签到,获得积分10
26秒前
Ava应助洋了个洋采纳,获得10
27秒前
qinyi完成签到 ,获得积分10
27秒前
念yu完成签到,获得积分10
28秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644032
求助须知:如何正确求助?哪些是违规求助? 4762682
关于积分的说明 15023283
捐赠科研通 4802257
什么是DOI,文献DOI怎么找? 2567397
邀请新用户注册赠送积分活动 1525099
关于科研通互助平台的介绍 1484620