LEVER: Online Adaptive Sequence Learning Framework for High-Frequency Trading

计算机科学 高频交易 深度学习 算法交易 自编码 人工智能 利用 机器学习 交易策略 信号(编程语言) 计量经济学 计算机安全 金融经济学 经济 程序设计语言
作者
Zixuan Yuan,Junming Liu,Haoyi Zhou,Denghui Zhang,Hao Liu,Nengjun Zhu,Hui Xiong
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:1
标识
DOI:10.1109/tkde.2023.3336185
摘要

Recent years have witnessed the fast development of deep learning techniques in quantitative trading. It still remains unclear how to exploit deep learning techniques to improve high-frequency trading (HFT). Indeed, there are two emerging challenges for the use of deep learning for HFT: (i) how to quantify fast-changing market conditions for tick-level signal prediction; (ii) how to establish a unified trading paradigm for different securities of diverse market conditions and severe signal sparsity. To this end, in this paper, we propose an Online Adaptive Sequence Learning (LEVER) framework, which consists of two distinct components to predict the HFT signals at the tick level for a variety of securities simultaneously. Specifically, we start with a single learner that adopts an encoder-decoder architecture for each security-based HFT signal prediction. In this single learner, an ordered encoder module first captures the variability patterns of the security's price curve by encoding the input indicator sequence from different time ranges. An unordered decoder module then outlines the pivot points of the price curve as support and resistance levels to quantify the market status. Based on the measured market condition, a prediction module further approximates the impacts of upcoming security data as the potential market momentum to detect the tick-level trading signals. To overcome the computational challenges and signal sparsity posed by online HFT for multiple securities, we develop a competitive active-meta learning paradigm to enhance the signal learners' learning efficiency for online implementation. Finally, extensive experiments on real-world stock market data demonstrate the effectiveness of our deployed LEVER for improving the performances of the existing industry method by 0.27 in the Sharpe ratio and by 0.09% in a transaction-based return.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
白白发布了新的文献求助10
1秒前
gilderf完成签到,获得积分10
1秒前
JamesPei应助我爱学习采纳,获得10
1秒前
科目三应助一小位同学采纳,获得10
2秒前
黑闷蛋完成签到,获得积分10
2秒前
2秒前
SUNHOPE发布了新的文献求助10
2秒前
yekindar发布了新的文献求助10
2秒前
徐峰完成签到 ,获得积分10
2秒前
跳跃乌冬面完成签到,获得积分20
3秒前
ldj6670发布了新的文献求助10
4秒前
4秒前
4秒前
kuailewuzhu完成签到,获得积分10
4秒前
5秒前
xj305完成签到,获得积分10
5秒前
Zrf发布了新的文献求助10
6秒前
来碗米饭完成签到,获得积分10
7秒前
7秒前
7秒前
默默半凡发布了新的文献求助10
8秒前
SciGPT应助二十四桥明月夜采纳,获得10
8秒前
小马甲应助吱吱采纳,获得10
9秒前
珂伟应助adeno采纳,获得10
9秒前
9秒前
糊糊涂涂完成签到,获得积分10
9秒前
10秒前
10秒前
Gigi完成签到,获得积分10
10秒前
czz完成签到,获得积分10
10秒前
星辰大海应助来碗米饭采纳,获得10
11秒前
李爱国应助白白采纳,获得10
11秒前
小夏完成签到,获得积分10
11秒前
11秒前
快乐蜗牛完成签到,获得积分10
11秒前
12秒前
搜集达人应助郭郭郭郭采纳,获得10
12秒前
赘婿应助P_Zh_CN采纳,获得10
13秒前
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305226
求助须知:如何正确求助?哪些是违规求助? 2939075
关于积分的说明 8491339
捐赠科研通 2613524
什么是DOI,文献DOI怎么找? 1427464
科研通“疑难数据库(出版商)”最低求助积分说明 663054
邀请新用户注册赠送积分活动 647708