亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

LEVER: Online Adaptive Sequence Learning Framework for High-Frequency Trading

计算机科学 高频交易 深度学习 算法交易 自编码 人工智能 利用 机器学习 交易策略 信号(编程语言) 计量经济学 计算机安全 金融经济学 经济 程序设计语言
作者
Zixuan Yuan,Junming Liu,Haoyi Zhou,Denghui Zhang,Hao Liu,Nengjun Zhu,Hui Xiong
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:1
标识
DOI:10.1109/tkde.2023.3336185
摘要

Recent years have witnessed the fast development of deep learning techniques in quantitative trading. It still remains unclear how to exploit deep learning techniques to improve high-frequency trading (HFT). Indeed, there are two emerging challenges for the use of deep learning for HFT: (i) how to quantify fast-changing market conditions for tick-level signal prediction; (ii) how to establish a unified trading paradigm for different securities of diverse market conditions and severe signal sparsity. To this end, in this paper, we propose an Online Adaptive Sequence Learning (LEVER) framework, which consists of two distinct components to predict the HFT signals at the tick level for a variety of securities simultaneously. Specifically, we start with a single learner that adopts an encoder-decoder architecture for each security-based HFT signal prediction. In this single learner, an ordered encoder module first captures the variability patterns of the security's price curve by encoding the input indicator sequence from different time ranges. An unordered decoder module then outlines the pivot points of the price curve as support and resistance levels to quantify the market status. Based on the measured market condition, a prediction module further approximates the impacts of upcoming security data as the potential market momentum to detect the tick-level trading signals. To overcome the computational challenges and signal sparsity posed by online HFT for multiple securities, we develop a competitive active-meta learning paradigm to enhance the signal learners' learning efficiency for online implementation. Finally, extensive experiments on real-world stock market data demonstrate the effectiveness of our deployed LEVER for improving the performances of the existing industry method by 0.27 in the Sharpe ratio and by 0.09% in a transaction-based return.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TXZ06完成签到,获得积分10
4秒前
Owen应助苹果绿采纳,获得10
10秒前
丰富的绮波完成签到 ,获得积分10
13秒前
123发布了新的文献求助10
14秒前
23秒前
苹果绿完成签到,获得积分20
26秒前
2633148059发布了新的文献求助10
28秒前
一生完成签到,获得积分10
30秒前
万能图书馆应助和光同尘采纳,获得10
33秒前
化学把我害惨了完成签到,获得积分10
46秒前
xsy完成签到 ,获得积分10
51秒前
英姑应助wenky采纳,获得10
53秒前
1分钟前
1分钟前
啊z应助科研通管家采纳,获得10
1分钟前
2分钟前
2分钟前
雨寒完成签到 ,获得积分10
2分钟前
2分钟前
Ava应助阿司匹林采纳,获得30
2分钟前
妮娜发布了新的文献求助10
2分钟前
单纯的雪巧完成签到,获得积分10
2分钟前
宋宋不迷糊完成签到 ,获得积分10
2分钟前
阿司匹林完成签到 ,获得积分10
2分钟前
2分钟前
阿司匹林发布了新的文献求助30
2分钟前
单纯的雪巧关注了科研通微信公众号
3分钟前
larsy完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
larsy发布了新的文献求助10
3分钟前
3分钟前
CJH104完成签到 ,获得积分10
3分钟前
ZanE完成签到,获得积分10
3分钟前
一粟的粉r完成签到 ,获得积分10
3分钟前
华仔应助千千方方123采纳,获得10
4分钟前
4分钟前
alex发布了新的文献求助10
4分钟前
alex完成签到,获得积分10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681520
求助须知:如何正确求助?哪些是违规求助? 5008964
关于积分的说明 15175712
捐赠科研通 4841035
什么是DOI,文献DOI怎么找? 2594826
邀请新用户注册赠送积分活动 1547832
关于科研通互助平台的介绍 1505846