LEVER: Online Adaptive Sequence Learning Framework for High-Frequency Trading

计算机科学 高频交易 深度学习 算法交易 自编码 人工智能 利用 机器学习 交易策略 信号(编程语言) 计量经济学 计算机安全 金融经济学 经济 程序设计语言
作者
Zixuan Yuan,Junming Liu,Haoyi Zhou,Denghui Zhang,Hao Liu,Nengjun Zhu,Hui Xiong
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:1
标识
DOI:10.1109/tkde.2023.3336185
摘要

Recent years have witnessed the fast development of deep learning techniques in quantitative trading. It still remains unclear how to exploit deep learning techniques to improve high-frequency trading (HFT). Indeed, there are two emerging challenges for the use of deep learning for HFT: (i) how to quantify fast-changing market conditions for tick-level signal prediction; (ii) how to establish a unified trading paradigm for different securities of diverse market conditions and severe signal sparsity. To this end, in this paper, we propose an Online Adaptive Sequence Learning (LEVER) framework, which consists of two distinct components to predict the HFT signals at the tick level for a variety of securities simultaneously. Specifically, we start with a single learner that adopts an encoder-decoder architecture for each security-based HFT signal prediction. In this single learner, an ordered encoder module first captures the variability patterns of the security's price curve by encoding the input indicator sequence from different time ranges. An unordered decoder module then outlines the pivot points of the price curve as support and resistance levels to quantify the market status. Based on the measured market condition, a prediction module further approximates the impacts of upcoming security data as the potential market momentum to detect the tick-level trading signals. To overcome the computational challenges and signal sparsity posed by online HFT for multiple securities, we develop a competitive active-meta learning paradigm to enhance the signal learners' learning efficiency for online implementation. Finally, extensive experiments on real-world stock market data demonstrate the effectiveness of our deployed LEVER for improving the performances of the existing industry method by 0.27 in the Sharpe ratio and by 0.09% in a transaction-based return.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ljj发布了新的文献求助10
1秒前
愉快之槐发布了新的文献求助200
1秒前
guozizi发布了新的文献求助10
1秒前
苹果发布了新的文献求助10
1秒前
2秒前
ayeben完成签到,获得积分10
2秒前
朴实寻真发布了新的文献求助10
2秒前
tingting关注了科研通微信公众号
2秒前
汉堡国王完成签到,获得积分10
3秒前
3秒前
chercher完成签到,获得积分10
4秒前
kai发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
yuhongsun完成签到,获得积分10
7秒前
重要寒珊发布了新的文献求助10
8秒前
8秒前
9秒前
研友_VZG7GZ应助科研圣体采纳,获得10
10秒前
10秒前
yuhongsun发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
星辰愿发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
慕青应助奥特曼采纳,获得10
13秒前
13秒前
所所应助傻傻的语蕊采纳,获得10
13秒前
darcy发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
15秒前
674发布了新的文献求助10
15秒前
你hao完成签到,获得积分10
16秒前
wanci应助优雅沛文采纳,获得10
17秒前
随缘发布了新的文献求助10
17秒前
Seek发布了新的文献求助10
17秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729907
求助须知:如何正确求助?哪些是违规求助? 5320921
关于积分的说明 15317727
捐赠科研通 4876709
什么是DOI,文献DOI怎么找? 2619565
邀请新用户注册赠送积分活动 1569026
关于科研通互助平台的介绍 1525640