已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

LEVER: Online Adaptive Sequence Learning Framework for High-Frequency Trading

计算机科学 高频交易 深度学习 算法交易 自编码 人工智能 利用 机器学习 交易策略 信号(编程语言) 计量经济学 计算机安全 金融经济学 经济 程序设计语言
作者
Zixuan Yuan,Junming Liu,Haoyi Zhou,Denghui Zhang,Hao Liu,Nengjun Zhu,Hui Xiong
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:1
标识
DOI:10.1109/tkde.2023.3336185
摘要

Recent years have witnessed the fast development of deep learning techniques in quantitative trading. It still remains unclear how to exploit deep learning techniques to improve high-frequency trading (HFT). Indeed, there are two emerging challenges for the use of deep learning for HFT: (i) how to quantify fast-changing market conditions for tick-level signal prediction; (ii) how to establish a unified trading paradigm for different securities of diverse market conditions and severe signal sparsity. To this end, in this paper, we propose an Online Adaptive Sequence Learning (LEVER) framework, which consists of two distinct components to predict the HFT signals at the tick level for a variety of securities simultaneously. Specifically, we start with a single learner that adopts an encoder-decoder architecture for each security-based HFT signal prediction. In this single learner, an ordered encoder module first captures the variability patterns of the security's price curve by encoding the input indicator sequence from different time ranges. An unordered decoder module then outlines the pivot points of the price curve as support and resistance levels to quantify the market status. Based on the measured market condition, a prediction module further approximates the impacts of upcoming security data as the potential market momentum to detect the tick-level trading signals. To overcome the computational challenges and signal sparsity posed by online HFT for multiple securities, we develop a competitive active-meta learning paradigm to enhance the signal learners' learning efficiency for online implementation. Finally, extensive experiments on real-world stock market data demonstrate the effectiveness of our deployed LEVER for improving the performances of the existing industry method by 0.27 in the Sharpe ratio and by 0.09% in a transaction-based return.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助李晓萌采纳,获得10
刚刚
椰子完成签到 ,获得积分10
刚刚
万能的悲剧完成签到 ,获得积分10
1秒前
大熊发布了新的文献求助10
3秒前
yyyyyy完成签到,获得积分10
3秒前
三岁完成签到 ,获得积分10
4秒前
Zq完成签到 ,获得积分10
4秒前
FLY完成签到,获得积分10
4秒前
S-Lab Sonic发布了新的文献求助20
6秒前
wang5945完成签到 ,获得积分10
7秒前
大方荟完成签到 ,获得积分10
8秒前
11秒前
11秒前
12秒前
三泥完成签到,获得积分10
13秒前
夏夏完成签到 ,获得积分10
14秒前
14秒前
完美世界应助222333采纳,获得10
15秒前
生命科学完成签到 ,获得积分10
15秒前
光热效应完成签到,获得积分10
17秒前
Jinyang发布了新的文献求助10
17秒前
刘齐完成签到,获得积分10
18秒前
嘿嘿应助烂漫绮兰采纳,获得30
19秒前
19秒前
19秒前
欢喜的绮山完成签到,获得积分10
22秒前
充电宝应助S-Lab Sonic采纳,获得10
23秒前
23秒前
23秒前
大熊发布了新的文献求助10
24秒前
光热效应发布了新的文献求助10
26秒前
西湖醋鱼完成签到,获得积分10
26秒前
sss完成签到 ,获得积分10
26秒前
26秒前
29秒前
浮游应助曙光采纳,获得10
30秒前
222333发布了新的文献求助10
30秒前
yuandfish完成签到,获得积分20
31秒前
shaangu623完成签到,获得积分20
31秒前
大树爱树懒完成签到,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573156
求助须知:如何正确求助?哪些是违规求助? 4659297
关于积分的说明 14724290
捐赠科研通 4599114
什么是DOI,文献DOI怎么找? 2524112
邀请新用户注册赠送积分活动 1494675
关于科研通互助平台的介绍 1464681