Joint Task Offloading and Resources Allocation for Hybrid Vehicle Edge Computing Systems

计算机科学 任务(项目管理) 资源配置 边缘计算 服务器 斯塔克伯格竞赛 GSM演进的增强数据速率 分布式计算 移动边缘计算 资源管理(计算) 计算卸载 共享资源 计算机网络 工程类 人工智能 系统工程 数学 数理经济学
作者
Luxiu Yin,Juan Luo,Chuanxi Qiu,Chun Wang,Ying Qiao
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (8): 10355-10368 被引量:10
标识
DOI:10.1109/tits.2024.3351635
摘要

With the rapid development of vehicle-to-everything communication technologies, many emerging compute-intensive in-vehicle applications have emerged. Vehicle edge computing (VEC) leverages the computational resources available at edge nodes to alleviate the strain on public network transmission and reduce task processing latency. However, the dynamic nature of the vehicle environment, the challenge of incentivizing vehicles to share idle resources, and the uncertainty surrounding the number of resources shared by vehicles present significant obstacles in designing task offloading and resource allocation methods for VEC systems. In this paper, we propose a hybrid offloading model wherein task vehicles can offload tasks to roadside units (RSUs) or other vehicles sharing resources. To maximize the benefits derived from task vehicles, RSUs, and shared resource vehicles, we first introduce an adaptive type selection algorithm (ALTS) for shared resource vehicles based on the multi-armed bandit (MAB) theory. Furthermore, we model the three-party interaction as a multi-stage Stackelberg game involving a computational resource lease contract. Experimental results demonstrate the superiority of the proposed ALTS algorithm over existing learning algorithms, thereby showcasing the effectiveness of the lease contract and the three-party transaction mechanism. Comparative experiments also reveal that integrating RSUs and idle vehicle resources offers better services compared to mechanisms relying solely on edge servers or shared resource vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小肉丝发布了新的文献求助10
刚刚
Linyi完成签到,获得积分10
1秒前
与山发布了新的文献求助50
2秒前
5秒前
充电宝应助雨晴采纳,获得10
6秒前
fgd应助kkkkk采纳,获得10
7秒前
搞怪莫茗应助xiao_niu采纳,获得10
8秒前
10秒前
852应助Juliet采纳,获得10
10秒前
11秒前
云中漫步完成签到,获得积分10
13秒前
爱听歌初曼关注了科研通微信公众号
13秒前
隐形曼青应助shenghao采纳,获得10
15秒前
cyh发布了新的文献求助10
15秒前
蔡蔡完成签到,获得积分10
15秒前
铁蛋发布了新的文献求助10
18秒前
19秒前
20秒前
21秒前
毛123完成签到,获得积分10
23秒前
祭礼之龙发布了新的文献求助10
23秒前
24秒前
Dr_Zayn发布了新的文献求助20
24秒前
Liz完成签到 ,获得积分10
25秒前
26秒前
求助论文的人完成签到,获得积分10
26秒前
量子星尘发布了新的文献求助10
26秒前
成就忻发布了新的文献求助10
26秒前
26秒前
27秒前
ff完成签到,获得积分10
27秒前
付艳完成签到,获得积分10
29秒前
硫化铅完成签到,获得积分10
30秒前
31秒前
31秒前
苹果果汁完成签到,获得积分10
31秒前
32秒前
张秀燕发布了新的文献求助10
32秒前
33秒前
zzx完成签到 ,获得积分10
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956697
求助须知:如何正确求助?哪些是违规求助? 3502770
关于积分的说明 11110029
捐赠科研通 3233693
什么是DOI,文献DOI怎么找? 1787452
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802152