Joint Task Offloading and Resources Allocation for Hybrid Vehicle Edge Computing Systems

计算机科学 任务(项目管理) 资源配置 边缘计算 服务器 斯塔克伯格竞赛 GSM演进的增强数据速率 分布式计算 移动边缘计算 资源管理(计算) 计算卸载 共享资源 计算机网络 工程类 人工智能 系统工程 数理经济学 数学
作者
Luxiu Yin,Juan Luo,Chuanxi Qiu,Chun Wang,Ying Qiao
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (8): 10355-10368 被引量:10
标识
DOI:10.1109/tits.2024.3351635
摘要

With the rapid development of vehicle-to-everything communication technologies, many emerging compute-intensive in-vehicle applications have emerged. Vehicle edge computing (VEC) leverages the computational resources available at edge nodes to alleviate the strain on public network transmission and reduce task processing latency. However, the dynamic nature of the vehicle environment, the challenge of incentivizing vehicles to share idle resources, and the uncertainty surrounding the number of resources shared by vehicles present significant obstacles in designing task offloading and resource allocation methods for VEC systems. In this paper, we propose a hybrid offloading model wherein task vehicles can offload tasks to roadside units (RSUs) or other vehicles sharing resources. To maximize the benefits derived from task vehicles, RSUs, and shared resource vehicles, we first introduce an adaptive type selection algorithm (ALTS) for shared resource vehicles based on the multi-armed bandit (MAB) theory. Furthermore, we model the three-party interaction as a multi-stage Stackelberg game involving a computational resource lease contract. Experimental results demonstrate the superiority of the proposed ALTS algorithm over existing learning algorithms, thereby showcasing the effectiveness of the lease contract and the three-party transaction mechanism. Comparative experiments also reveal that integrating RSUs and idle vehicle resources offers better services compared to mechanisms relying solely on edge servers or shared resource vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助饕餮1235采纳,获得10
刚刚
小蘑菇应助CC采纳,获得10
1秒前
白白完成签到,获得积分10
1秒前
1秒前
1秒前
苏苏完成签到,获得积分10
2秒前
2秒前
wu完成签到,获得积分10
2秒前
2秒前
3秒前
MADKAI发布了新的文献求助10
3秒前
3秒前
李健的小迷弟应助111采纳,获得10
4秒前
Accept应助wintercyan采纳,获得20
4秒前
哲999完成签到,获得积分10
4秒前
Mian完成签到,获得积分10
4秒前
5秒前
5秒前
于嗣濠完成签到 ,获得积分10
5秒前
36456657应助CC采纳,获得10
5秒前
优雅山柏发布了新的文献求助10
6秒前
Jacky完成签到,获得积分10
6秒前
脑洞疼应助无情的白桃采纳,获得10
6秒前
mm发布了新的文献求助10
6秒前
7秒前
7秒前
zoko发布了新的文献求助10
7秒前
7秒前
曾经的臻发布了新的文献求助10
7秒前
华仔应助S1mple_gentleman采纳,获得10
7秒前
科研通AI5应助CC采纳,获得10
7秒前
7秒前
8秒前
8秒前
张静静完成签到,获得积分10
9秒前
9秒前
震666发布了新的文献求助30
9秒前
MADKAI发布了新的文献求助10
9秒前
9秒前
117发布了新的文献求助10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740