Ultrasonic Image Recognition of Terminal Lead Seal Defects Based on Convolutional Neural Network

印章(徽章) 卷积神经网络 终端(电信) 超声波传感器 人工智能 计算机科学 铅(地质) 模式识别(心理学) 图像(数学) 计算机视觉 地质学 声学 地理 物理 电信 考古 地貌学
作者
Linggang Zhou,Wenhui Li,Xin Lu,Xueyan Wang,Huan Liu,Junzhe Liang,Fenggeng Jiang,Zhou Gu
出处
期刊:Lecture notes in electrical engineering 卷期号:: 77-88
标识
DOI:10.1007/978-981-99-7393-4_8
摘要

At present, high-voltage cables are widely used in urban power grid transmission projects. As an important part of high-voltage cable terminal accessories, lead seals at high-voltage cable terminals will have defects such as holes, cracks or debonding due to unqualified installation quality or external forces during operation, affecting the safe and stable operation of power systems. The traditional ultrasonic phased array detection method for lead seal defects is to process the ultrasonic defect image and observe it manually, which has low efficiency and accuracy. Traditional machine learning methods need to manually select the detection object features, lack of adaptability and robustness, and have low accuracy of target detection. In order to improve the intelligent level of lead seal defect detection, an ultrasonic image recognition method of lead seal defect based on convolutional neural network is proposed, which can automatically learn features from the ultrasonic image of lead seal defect and complete defect classification and recognition. The ultrasonic image sample library of four typical lead seal defects was established, and the ultrasonic image recognition model of lead seal defects was built. The model was trained and tested by using standardized ultrasonic image data. The results show that by adjusting the convolution neural network test parameters, different types of defects in lead seal can be quickly and accurately identified, and the accuracy rate can reach 100%. It shows that the method has good robustness, strong anti-interference ability and good detection performance for lead seal defects, and has a good application prospect in the actual terminal lead seal defect detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
amywang1931发布了新的文献求助10
2秒前
4秒前
落俗发布了新的文献求助10
5秒前
spp发布了新的文献求助10
8秒前
9秒前
amywang1931完成签到,获得积分10
10秒前
10秒前
12秒前
小狗不是抠脚兵完成签到,获得积分10
12秒前
归途完成签到 ,获得积分10
13秒前
mmr发布了新的文献求助60
13秒前
Orange应助乱武采纳,获得30
13秒前
浔xxx发布了新的文献求助10
14秒前
15秒前
16秒前
18秒前
19秒前
20秒前
21秒前
22秒前
已知中的未知完成签到 ,获得积分10
24秒前
25秒前
斯文觅珍发布了新的文献求助10
25秒前
space完成签到,获得积分10
26秒前
张雷应助科研通管家采纳,获得20
26秒前
科目三应助科研通管家采纳,获得10
26秒前
ED应助科研通管家采纳,获得10
26秒前
所所应助科研通管家采纳,获得10
27秒前
Owen应助科研通管家采纳,获得10
27秒前
上官若男应助科研通管家采纳,获得10
27秒前
1111应助科研通管家采纳,获得10
27秒前
YamDaamCaa应助科研通管家采纳,获得30
27秒前
27秒前
27秒前
27秒前
27秒前
小小叶完成签到,获得积分10
28秒前
28秒前
情怀应助火星上鑫鹏采纳,获得10
28秒前
ZAPAR发布了新的文献求助10
29秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993454
求助须知:如何正确求助?哪些是违规求助? 3534113
关于积分的说明 11264719
捐赠科研通 3273986
什么是DOI,文献DOI怎么找? 1806200
邀请新用户注册赠送积分活动 883026
科研通“疑难数据库(出版商)”最低求助积分说明 809662