Ultrasonic Image Recognition of Terminal Lead Seal Defects Based on Convolutional Neural Network

印章(徽章) 卷积神经网络 终端(电信) 超声波传感器 人工智能 计算机科学 铅(地质) 模式识别(心理学) 图像(数学) 计算机视觉 地质学 声学 地理 物理 电信 考古 地貌学
作者
Linggang Zhou,Wenhui Li,Xin Lu,Xueyan Wang,Huan Liu,Junzhe Liang,Fenggeng Jiang,Zhou Gu
出处
期刊:Lecture notes in electrical engineering 卷期号:: 77-88
标识
DOI:10.1007/978-981-99-7393-4_8
摘要

At present, high-voltage cables are widely used in urban power grid transmission projects. As an important part of high-voltage cable terminal accessories, lead seals at high-voltage cable terminals will have defects such as holes, cracks or debonding due to unqualified installation quality or external forces during operation, affecting the safe and stable operation of power systems. The traditional ultrasonic phased array detection method for lead seal defects is to process the ultrasonic defect image and observe it manually, which has low efficiency and accuracy. Traditional machine learning methods need to manually select the detection object features, lack of adaptability and robustness, and have low accuracy of target detection. In order to improve the intelligent level of lead seal defect detection, an ultrasonic image recognition method of lead seal defect based on convolutional neural network is proposed, which can automatically learn features from the ultrasonic image of lead seal defect and complete defect classification and recognition. The ultrasonic image sample library of four typical lead seal defects was established, and the ultrasonic image recognition model of lead seal defects was built. The model was trained and tested by using standardized ultrasonic image data. The results show that by adjusting the convolution neural network test parameters, different types of defects in lead seal can be quickly and accurately identified, and the accuracy rate can reach 100%. It shows that the method has good robustness, strong anti-interference ability and good detection performance for lead seal defects, and has a good application prospect in the actual terminal lead seal defect detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HOHO发布了新的文献求助10
1秒前
米欧完成签到,获得积分10
1秒前
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
无心应助liuhaiChen采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得30
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
科研通AI6应助和谐碧琴采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
pluto应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
2秒前
Akim应助科研通管家采纳,获得30
2秒前
3秒前
3秒前
姜友舜完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
科研通AI6应助flsqw采纳,获得10
3秒前
3秒前
3秒前
chicy完成签到,获得积分20
4秒前
踏实语海完成签到,获得积分10
4秒前
4秒前
4秒前
科研通AI6应助神明采纳,获得10
4秒前
bkagyin应助科研小菜鸡采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836