Ultrasonic Image Recognition of Terminal Lead Seal Defects Based on Convolutional Neural Network

印章(徽章) 卷积神经网络 终端(电信) 超声波传感器 人工智能 计算机科学 铅(地质) 模式识别(心理学) 图像(数学) 计算机视觉 地质学 声学 地理 物理 电信 考古 地貌学
作者
Linggang Zhou,Wenhui Li,Xin Lu,Xueyan Wang,Huan Liu,Junzhe Liang,Fenggeng Jiang,Zhou Gu
出处
期刊:Lecture notes in electrical engineering 卷期号:: 77-88
标识
DOI:10.1007/978-981-99-7393-4_8
摘要

At present, high-voltage cables are widely used in urban power grid transmission projects. As an important part of high-voltage cable terminal accessories, lead seals at high-voltage cable terminals will have defects such as holes, cracks or debonding due to unqualified installation quality or external forces during operation, affecting the safe and stable operation of power systems. The traditional ultrasonic phased array detection method for lead seal defects is to process the ultrasonic defect image and observe it manually, which has low efficiency and accuracy. Traditional machine learning methods need to manually select the detection object features, lack of adaptability and robustness, and have low accuracy of target detection. In order to improve the intelligent level of lead seal defect detection, an ultrasonic image recognition method of lead seal defect based on convolutional neural network is proposed, which can automatically learn features from the ultrasonic image of lead seal defect and complete defect classification and recognition. The ultrasonic image sample library of four typical lead seal defects was established, and the ultrasonic image recognition model of lead seal defects was built. The model was trained and tested by using standardized ultrasonic image data. The results show that by adjusting the convolution neural network test parameters, different types of defects in lead seal can be quickly and accurately identified, and the accuracy rate can reach 100%. It shows that the method has good robustness, strong anti-interference ability and good detection performance for lead seal defects, and has a good application prospect in the actual terminal lead seal defect detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
coco完成签到,获得积分10
刚刚
MathFun完成签到 ,获得积分10
2秒前
gtxy发布了新的文献求助10
4秒前
YY完成签到,获得积分10
6秒前
6秒前
默默的乘风完成签到 ,获得积分10
7秒前
CipherSage应助科研通管家采纳,获得10
9秒前
思源应助科研通管家采纳,获得10
9秒前
情怀应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
FashionBoy应助科研通管家采纳,获得30
9秒前
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
12秒前
byyyy完成签到,获得积分10
13秒前
薰硝壤应助sunsaint采纳,获得10
13秒前
16秒前
汪小杰完成签到,获得积分10
17秒前
666完成签到,获得积分20
18秒前
20秒前
20秒前
20秒前
困敦发布了新的文献求助10
21秒前
小熊完成签到,获得积分10
22秒前
22秒前
Lili发布了新的文献求助10
24秒前
Yan发布了新的文献求助10
25秒前
暖阳发布了新的文献求助10
26秒前
30秒前
稳重的若雁应助Yan采纳,获得10
34秒前
C洛7完成签到,获得积分10
34秒前
大个应助huangnvshi采纳,获得10
37秒前
wyq完成签到,获得积分10
38秒前
JS完成签到,获得积分10
38秒前
wangyun完成签到,获得积分10
42秒前
43秒前
爆米花应助简单奎采纳,获得10
46秒前
tianxiadu发布了新的文献求助30
47秒前
48秒前
48秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141402
求助须知:如何正确求助?哪些是违规求助? 2792438
关于积分的说明 7802634
捐赠科研通 2448628
什么是DOI,文献DOI怎么找? 1302644
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237