A new multiregional carbon emissions forecasting model based on a multivariable information fusion mechanism and hybrid spatiotemporal graph convolution network

图形 计算机科学 数据挖掘 卷积神经网络 人工智能 理论计算机科学
作者
Zongshu Shao,Sheng Gao,Kaile Zhou,Shanlin Yang
出处
期刊:Journal of Environmental Management [Elsevier BV]
卷期号:352: 119976-119976
标识
DOI:10.1016/j.jenvman.2023.119976
摘要

Developing scientific and effective carbon emissions reduction policies relies heavily on precise carbon emission trend prediction. The existing complex spatiotemporal correlation and diverse range of influencing factors associated with multi-regional carbon emissions pose significant challenges to accurately modeling these trends. Under this constraint, this study is inspired by graph learning to establish a hybrid dynamic and static graph-based regional carbon emission network framework, which introduces a novel research standpoint for investigating short-term carbon emissions prediction (CEP). Specifically, a parallel framework of attribute-augmented dynamic multi-modal graph convolutional neural networks (ADMGCN) and temporal convolutional networks with adaptive fusion multi-scale receptive fields (AFMRFTCN) is proposed. The proposed model is evaluated against nineteen state-of-the-art models using daily carbon emission data from 30 regions in China, demonstrating its effectiveness in accurately predicting the trends of multi-regional carbon emissions. Conclusions are drawn as follows: First, especially in regions with marked periodicity, compared with the best baseline model, the mean absolute percentage error (MAPE) of our model is reduced by 20.19%. Second, incorporating graph convolutional neural networks (GCNs) with dynamic and static graphs is advantageous in extracting the spatial features of China's carbon emission network, which are influenced by geographical, economic, and industrial factors. Third, the parallel ADMGCN-AFMRFTCNs framework effectively captures the influence of external information on carbon emissions while mitigating the issue of low prediction accuracy resulting from univariate information. Fourth, the analysis reveals significant differences in the short-term (30-day) growth rate of carbon emissions among different regions. For example, Henan exhibits the highest growth rate (37.38%), while Guizhou has the lowest growth rate (−7.46%). It is valuable for policymakers and stakeholders seeking to identify regions with distinct emission patterns and prioritize mitigation efforts accordingly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
KUZZZ完成签到,获得积分10
1秒前
2秒前
左丘以云发布了新的文献求助20
2秒前
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
科研小白完成签到,获得积分10
4秒前
Ava应助KUZZZ采纳,获得10
5秒前
SciGPT应助平常的凝蕊采纳,获得10
5秒前
whh123完成签到 ,获得积分10
5秒前
6秒前
JamesPei应助liubo采纳,获得10
6秒前
6秒前
Ava应助hahhh7采纳,获得10
7秒前
lelsey发布了新的文献求助10
7秒前
陈先生发布了新的文献求助10
7秒前
jase发布了新的文献求助10
7秒前
丫丫完成签到,获得积分10
8秒前
8秒前
seannnnnnn发布了新的文献求助10
8秒前
1234发布了新的文献求助10
9秒前
和和发布了新的文献求助10
9秒前
HenryXiao发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
10秒前
汉堡包应助框框采纳,获得10
10秒前
左丘以云完成签到,获得积分10
10秒前
要去西农完成签到,获得积分20
11秒前
12秒前
12秒前
12秒前
12秒前
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653