已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Accelerating operation optimization of complex chemical processes: A novel framework integrating artificial neural network and mixed-integer linear programming

人工神经网络 计算机科学 线性规划 数学优化 稳健性(进化) 感知器 整数规划 最优化问题 人工智能 机器学习 算法 数学 生物化学 化学 基因
作者
Jianzhao Zhou,Tao Shi,Jingzheng Ren,Chang He
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:481: 148421-148421 被引量:13
标识
DOI:10.1016/j.cej.2023.148421
摘要

We present an automated framework that integrates rectified linear unit activated artificial neural network (ReLU-ANN) and mixed-integer linear programming (MILP) to enable efficient operational-level optimization of complex chemical processes. Initially, data is generated through rigorous simulations to pre-train surrogate models based on ReLU-ANN (classification and regression), and subsequently, MILP is employed for optimization by linearly formulating these models. This novel framework efficiently handles complex convergence constraints through a classification neural network which will be used for high-throughput screening data for regression, while simultaneously implementing an 'optimizing while learning' strategy. By iteratively updating the neural network based on optimization feedback, our approach streamlines the optimization process and ensure the feasibility of optimum solution. To demonstrate the versatility and robustness of our proposed framework, we examine three representative chemical processes: extractive distillation, organic Rankine cycle, and methanol synthesis. Our results reveal the framework’s potential in enhancing optimization effect while concurrently reducing computational time, surpassing the capabilities of typical optimization algorithms. In the case of the three processes, optimization effectiveness improved by 10.11%, 28.69%, and 5.45%, respectively, while execution time were reduced by 71.71%, 54.49%, and 59.38%. This notable enhancement in optimization efficiency stems from a substantial reduction in costly while ineffective objective function evaluations. By seamless integration of ReLU-ANN and MILP, our proposed framework holds promise for improving the optimization of complex chemical processes, yielding superior results within significantly reduced timeframes compared to traditional approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
觉皇完成签到,获得积分10
刚刚
饱满罡完成签到,获得积分10
1秒前
2秒前
赘婿应助LLLUIUI采纳,获得10
2秒前
执着无声发布了新的文献求助10
2秒前
熊熊阁发布了新的文献求助10
3秒前
烟花应助小明采纳,获得10
4秒前
BowieHuang应助5114采纳,获得10
4秒前
半夏发布了新的文献求助10
4秒前
李健应助认真元灵采纳,获得10
5秒前
内向尔安发布了新的文献求助10
7秒前
7秒前
shehui发布了新的文献求助10
8秒前
曈12完成签到 ,获得积分10
8秒前
怕黑面包完成签到 ,获得积分10
10秒前
yinghong完成签到,获得积分10
10秒前
11秒前
Privacy完成签到 ,获得积分10
11秒前
Criminology34应助扶光采纳,获得10
13秒前
13秒前
13秒前
14秒前
BowieHuang应助siu采纳,获得10
15秒前
15秒前
orixero应助5114采纳,获得10
15秒前
可爱的函函应助kjidh采纳,获得10
16秒前
Jasper应助寒冰寒冰采纳,获得10
16秒前
葡萄柚子应助Kara采纳,获得20
16秒前
16秒前
皮代谷发布了新的文献求助10
17秒前
17秒前
Alan发布了新的文献求助10
18秒前
18秒前
ni发布了新的文献求助10
19秒前
19秒前
19秒前
20秒前
认真元灵完成签到,获得积分10
21秒前
wvv发布了新的文献求助10
21秒前
LLLUIUI发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771589
求助须知:如何正确求助?哪些是违规求助? 5592681
关于积分的说明 15427933
捐赠科研通 4904901
什么是DOI,文献DOI怎么找? 2639075
邀请新用户注册赠送积分活动 1586878
关于科研通互助平台的介绍 1541879