Accelerating operation optimization of complex chemical processes: A novel framework integrating artificial neural network and mixed-integer linear programming

人工神经网络 计算机科学 线性规划 数学优化 稳健性(进化) 感知器 整数规划 最优化问题 人工智能 机器学习 算法 数学 生物化学 基因 化学
作者
Jianzhao Zhou,Tao Shi,Jingzheng Ren,Chang He
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:481: 148421-148421 被引量:13
标识
DOI:10.1016/j.cej.2023.148421
摘要

We present an automated framework that integrates rectified linear unit activated artificial neural network (ReLU-ANN) and mixed-integer linear programming (MILP) to enable efficient operational-level optimization of complex chemical processes. Initially, data is generated through rigorous simulations to pre-train surrogate models based on ReLU-ANN (classification and regression), and subsequently, MILP is employed for optimization by linearly formulating these models. This novel framework efficiently handles complex convergence constraints through a classification neural network which will be used for high-throughput screening data for regression, while simultaneously implementing an 'optimizing while learning' strategy. By iteratively updating the neural network based on optimization feedback, our approach streamlines the optimization process and ensure the feasibility of optimum solution. To demonstrate the versatility and robustness of our proposed framework, we examine three representative chemical processes: extractive distillation, organic Rankine cycle, and methanol synthesis. Our results reveal the framework’s potential in enhancing optimization effect while concurrently reducing computational time, surpassing the capabilities of typical optimization algorithms. In the case of the three processes, optimization effectiveness improved by 10.11%, 28.69%, and 5.45%, respectively, while execution time were reduced by 71.71%, 54.49%, and 59.38%. This notable enhancement in optimization efficiency stems from a substantial reduction in costly while ineffective objective function evaluations. By seamless integration of ReLU-ANN and MILP, our proposed framework holds promise for improving the optimization of complex chemical processes, yielding superior results within significantly reduced timeframes compared to traditional approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
agnes发布了新的文献求助10
刚刚
Ovo关注了科研通微信公众号
刚刚
lessormoto发布了新的文献求助10
1秒前
Owen应助一天采纳,获得10
1秒前
赵丽红完成签到 ,获得积分10
1秒前
雪白梦容发布了新的文献求助10
2秒前
彭于晏应助冷静的无血采纳,获得10
2秒前
P16发布了新的文献求助10
2秒前
3秒前
yyy发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
Yin完成签到,获得积分10
4秒前
cxp完成签到,获得积分10
4秒前
Cx330发布了新的文献求助10
4秒前
4秒前
yeyeye完成签到 ,获得积分10
4秒前
汉堡包应助痴情的雁易采纳,获得10
5秒前
5秒前
6秒前
HY完成签到,获得积分10
6秒前
Clovis33完成签到 ,获得积分10
6秒前
虚幻诗柳应助啊啊啊啊采纳,获得10
7秒前
Li完成签到,获得积分10
7秒前
星星你个星星完成签到,获得积分10
7秒前
wei完成签到,获得积分10
7秒前
7秒前
7秒前
小一发布了新的文献求助10
8秒前
星河之外spectator完成签到,获得积分0
8秒前
8秒前
Tripod应助ivying0209采纳,获得10
8秒前
8秒前
8秒前
郑亚铎完成签到,获得积分10
9秒前
口袋小镇发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5013461
求助须知:如何正确求助?哪些是违规求助? 4254548
关于积分的说明 13258498
捐赠科研通 4057614
什么是DOI,文献DOI怎么找? 2219343
邀请新用户注册赠送积分活动 1228859
关于科研通互助平台的介绍 1151416