Accelerating operation optimization of complex chemical processes: A novel framework integrating artificial neural network and mixed-integer linear programming

人工神经网络 计算机科学 线性规划 数学优化 稳健性(进化) 感知器 整数规划 最优化问题 人工智能 机器学习 算法 数学 生物化学 基因 化学
作者
Jianzhao Zhou,Tao Shi,Jingzheng Ren,Chang He
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:481: 148421-148421 被引量:5
标识
DOI:10.1016/j.cej.2023.148421
摘要

We present an automated framework that integrates rectified linear unit activated artificial neural network (ReLU-ANN) and mixed-integer linear programming (MILP) to enable efficient operational-level optimization of complex chemical processes. Initially, data is generated through rigorous simulations to pre-train surrogate models based on ReLU-ANN (classification and regression), and subsequently, MILP is employed for optimization by linearly formulating these models. This novel framework efficiently handles complex convergence constraints through a classification neural network which will be used for high-throughput screening data for regression, while simultaneously implementing an 'optimizing while learning' strategy. By iteratively updating the neural network based on optimization feedback, our approach streamlines the optimization process and ensure the feasibility of optimum solution. To demonstrate the versatility and robustness of our proposed framework, we examine three representative chemical processes: extractive distillation, organic Rankine cycle, and methanol synthesis. Our results reveal the framework’s potential in enhancing optimization effect while concurrently reducing computational time, surpassing the capabilities of typical optimization algorithms. In the case of the three processes, optimization effectiveness improved by 10.11%, 28.69%, and 5.45%, respectively, while execution time were reduced by 71.71%, 54.49%, and 59.38%. This notable enhancement in optimization efficiency stems from a substantial reduction in costly while ineffective objective function evaluations. By seamless integration of ReLU-ANN and MILP, our proposed framework holds promise for improving the optimization of complex chemical processes, yielding superior results within significantly reduced timeframes compared to traditional approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XXF发布了新的文献求助10
刚刚
1秒前
儒雅的小松鼠应助sx采纳,获得10
2秒前
Yang_Yuting发布了新的文献求助30
2秒前
静静发布了新的文献求助20
2秒前
落山姬发布了新的文献求助10
2秒前
LNN完成签到,获得积分10
3秒前
红豆沙狼发布了新的文献求助10
3秒前
你你你完成签到,获得积分10
3秒前
LX77bx完成签到,获得积分10
4秒前
seusyy完成签到,获得积分10
6秒前
111完成签到 ,获得积分10
6秒前
7秒前
mmyhn发布了新的文献求助10
7秒前
8秒前
wanci应助有机分子笼采纳,获得10
9秒前
10秒前
able完成签到,获得积分10
11秒前
哭泣皮皮虾完成签到,获得积分10
12秒前
chcmuer发布了新的文献求助10
12秒前
CipherSage应助doc采纳,获得10
13秒前
薛华倩完成签到,获得积分10
14秒前
motokiww发布了新的文献求助10
14秒前
ZM完成签到 ,获得积分10
16秒前
李爱国应助七柱香采纳,获得10
16秒前
薛华倩发布了新的文献求助10
17秒前
wanci应助YQS采纳,获得10
18秒前
鳗鱼发带完成签到,获得积分10
18秒前
pluto应助再生极强的-涡虫采纳,获得10
19秒前
20秒前
852应助文茵采纳,获得10
22秒前
缓慢天抒完成签到,获得积分20
22秒前
22秒前
Gino完成签到,获得积分0
23秒前
25秒前
26秒前
刘维尼完成签到,获得积分10
26秒前
26秒前
igle发布了新的文献求助10
26秒前
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Production Logging: Theoretical and Interpretive Elements 1500
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3289559
求助须知:如何正确求助?哪些是违规求助? 2926539
关于积分的说明 8427772
捐赠科研通 2597793
什么是DOI,文献DOI怎么找? 1417361
科研通“疑难数据库(出版商)”最低求助积分说明 659675
邀请新用户注册赠送积分活动 642143