Accelerating operation optimization of complex chemical processes: A novel framework integrating artificial neural network and mixed-integer linear programming

人工神经网络 计算机科学 线性规划 数学优化 稳健性(进化) 感知器 整数规划 最优化问题 人工智能 机器学习 算法 数学 生物化学 化学 基因
作者
Jianzhao Zhou,Tao Shi,Jingzheng Ren,Chang He
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:481: 148421-148421 被引量:13
标识
DOI:10.1016/j.cej.2023.148421
摘要

We present an automated framework that integrates rectified linear unit activated artificial neural network (ReLU-ANN) and mixed-integer linear programming (MILP) to enable efficient operational-level optimization of complex chemical processes. Initially, data is generated through rigorous simulations to pre-train surrogate models based on ReLU-ANN (classification and regression), and subsequently, MILP is employed for optimization by linearly formulating these models. This novel framework efficiently handles complex convergence constraints through a classification neural network which will be used for high-throughput screening data for regression, while simultaneously implementing an 'optimizing while learning' strategy. By iteratively updating the neural network based on optimization feedback, our approach streamlines the optimization process and ensure the feasibility of optimum solution. To demonstrate the versatility and robustness of our proposed framework, we examine three representative chemical processes: extractive distillation, organic Rankine cycle, and methanol synthesis. Our results reveal the framework’s potential in enhancing optimization effect while concurrently reducing computational time, surpassing the capabilities of typical optimization algorithms. In the case of the three processes, optimization effectiveness improved by 10.11%, 28.69%, and 5.45%, respectively, while execution time were reduced by 71.71%, 54.49%, and 59.38%. This notable enhancement in optimization efficiency stems from a substantial reduction in costly while ineffective objective function evaluations. By seamless integration of ReLU-ANN and MILP, our proposed framework holds promise for improving the optimization of complex chemical processes, yielding superior results within significantly reduced timeframes compared to traditional approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gwt完成签到,获得积分20
1秒前
1秒前
Fanfan完成签到 ,获得积分10
2秒前
科研通AI2S应助lei采纳,获得10
4秒前
枫糖叶落完成签到,获得积分10
4秒前
4秒前
zhaoxiaonuan完成签到,获得积分10
5秒前
执着的导师完成签到,获得积分0
5秒前
小新新完成签到 ,获得积分10
6秒前
舒心完成签到 ,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
都要多喝水完成签到,获得积分10
8秒前
HH完成签到,获得积分10
9秒前
呵呵喊我完成签到,获得积分10
9秒前
邢哥哥完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
lurenjia009完成签到,获得积分10
10秒前
arniu2008发布了新的文献求助10
12秒前
开心的人杰完成签到,获得积分10
14秒前
研友_LN32Mn完成签到,获得积分10
17秒前
xiaofenzi完成签到,获得积分10
18秒前
Ao_Jiang完成签到,获得积分10
20秒前
西红柿完成签到,获得积分10
21秒前
yurh完成签到,获得积分10
22秒前
鹰击长空完成签到,获得积分10
23秒前
西奥牧马完成签到 ,获得积分10
23秒前
11完成签到 ,获得积分10
24秒前
大观天下发布了新的文献求助10
24秒前
24秒前
25秒前
25秒前
CipherSage应助科研通管家采纳,获得10
25秒前
CipherSage应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
科目三应助科研通管家采纳,获得10
25秒前
科目三应助科研通管家采纳,获得10
25秒前
xiaofan应助科研通管家采纳,获得10
25秒前
xiaofan应助科研通管家采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773428
求助须知:如何正确求助?哪些是违规求助? 5611061
关于积分的说明 15431143
捐赠科研通 4905922
什么是DOI,文献DOI怎么找? 2639929
邀请新用户注册赠送积分活动 1587829
关于科研通互助平台的介绍 1542833