Accelerating operation optimization of complex chemical processes: A novel framework integrating artificial neural network and mixed-integer linear programming

人工神经网络 计算机科学 线性规划 数学优化 稳健性(进化) 感知器 整数规划 最优化问题 人工智能 机器学习 算法 数学 生物化学 化学 基因
作者
Jianzhao Zhou,Tao Shi,Jingzheng Ren,Chang He
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:481: 148421-148421 被引量:8
标识
DOI:10.1016/j.cej.2023.148421
摘要

We present an automated framework that integrates rectified linear unit activated artificial neural network (ReLU-ANN) and mixed-integer linear programming (MILP) to enable efficient operational-level optimization of complex chemical processes. Initially, data is generated through rigorous simulations to pre-train surrogate models based on ReLU-ANN (classification and regression), and subsequently, MILP is employed for optimization by linearly formulating these models. This novel framework efficiently handles complex convergence constraints through a classification neural network which will be used for high-throughput screening data for regression, while simultaneously implementing an 'optimizing while learning' strategy. By iteratively updating the neural network based on optimization feedback, our approach streamlines the optimization process and ensure the feasibility of optimum solution. To demonstrate the versatility and robustness of our proposed framework, we examine three representative chemical processes: extractive distillation, organic Rankine cycle, and methanol synthesis. Our results reveal the framework’s potential in enhancing optimization effect while concurrently reducing computational time, surpassing the capabilities of typical optimization algorithms. In the case of the three processes, optimization effectiveness improved by 10.11%, 28.69%, and 5.45%, respectively, while execution time were reduced by 71.71%, 54.49%, and 59.38%. This notable enhancement in optimization efficiency stems from a substantial reduction in costly while ineffective objective function evaluations. By seamless integration of ReLU-ANN and MILP, our proposed framework holds promise for improving the optimization of complex chemical processes, yielding superior results within significantly reduced timeframes compared to traditional approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
知许解夏应助无助的人采纳,获得10
2秒前
传统的孤丝完成签到 ,获得积分10
3秒前
3秒前
默然的歌完成签到 ,获得积分10
3秒前
DAI应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
无花果应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
5秒前
852应助科研通管家采纳,获得10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
猪猪hero应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
liangeven发布了新的文献求助10
5秒前
千跃应助薛乎虚采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
moshi发布了新的文献求助10
6秒前
无敌牛奶发布了新的文献求助30
6秒前
7秒前
9秒前
CAOHOU应助moshi采纳,获得10
10秒前
勤劳的小牛蛙应助moshi采纳,获得10
10秒前
嘎嘣脆完成签到,获得积分10
11秒前
yy发布了新的文献求助10
12秒前
你66完成签到,获得积分10
12秒前
义气严青完成签到,获得积分10
13秒前
13秒前
14秒前
外向土豆完成签到,获得积分10
14秒前
闪闪念文完成签到,获得积分10
14秒前
二十二完成签到,获得积分10
16秒前
你66发布了新的文献求助10
17秒前
17秒前
18秒前
不安的秋白完成签到,获得积分10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959257
求助须知:如何正确求助?哪些是违规求助? 3505580
关于积分的说明 11124469
捐赠科研通 3237323
什么是DOI,文献DOI怎么找? 1789046
邀请新用户注册赠送积分活动 871526
科研通“疑难数据库(出版商)”最低求助积分说明 802844