亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Accelerating operation optimization of complex chemical processes: A novel framework integrating artificial neural network and mixed-integer linear programming

人工神经网络 计算机科学 线性规划 数学优化 稳健性(进化) 感知器 整数规划 最优化问题 人工智能 机器学习 算法 数学 生物化学 化学 基因
作者
Jianzhao Zhou,Tao Shi,Jingzheng Ren,Chang He
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:481: 148421-148421 被引量:13
标识
DOI:10.1016/j.cej.2023.148421
摘要

We present an automated framework that integrates rectified linear unit activated artificial neural network (ReLU-ANN) and mixed-integer linear programming (MILP) to enable efficient operational-level optimization of complex chemical processes. Initially, data is generated through rigorous simulations to pre-train surrogate models based on ReLU-ANN (classification and regression), and subsequently, MILP is employed for optimization by linearly formulating these models. This novel framework efficiently handles complex convergence constraints through a classification neural network which will be used for high-throughput screening data for regression, while simultaneously implementing an 'optimizing while learning' strategy. By iteratively updating the neural network based on optimization feedback, our approach streamlines the optimization process and ensure the feasibility of optimum solution. To demonstrate the versatility and robustness of our proposed framework, we examine three representative chemical processes: extractive distillation, organic Rankine cycle, and methanol synthesis. Our results reveal the framework’s potential in enhancing optimization effect while concurrently reducing computational time, surpassing the capabilities of typical optimization algorithms. In the case of the three processes, optimization effectiveness improved by 10.11%, 28.69%, and 5.45%, respectively, while execution time were reduced by 71.71%, 54.49%, and 59.38%. This notable enhancement in optimization efficiency stems from a substantial reduction in costly while ineffective objective function evaluations. By seamless integration of ReLU-ANN and MILP, our proposed framework holds promise for improving the optimization of complex chemical processes, yielding superior results within significantly reduced timeframes compared to traditional approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NIANIANKNIA完成签到,获得积分10
24秒前
爆米花应助默默采纳,获得10
28秒前
35秒前
默默发布了新的文献求助10
40秒前
Limerencia完成签到,获得积分10
50秒前
默mo完成签到 ,获得积分10
55秒前
1分钟前
小刘完成签到,获得积分10
1分钟前
1分钟前
1分钟前
NIANIANKNIA发布了新的文献求助200
1分钟前
脑洞疼应助KUIWU采纳,获得10
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
轻松戎发布了新的文献求助10
2分钟前
华仔应助轻松戎采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
abc应助真实的书雪采纳,获得10
2分钟前
2分钟前
英俊的铭应助altair采纳,获得20
2分钟前
YJSSLBY完成签到 ,获得积分10
2分钟前
Akim应助123采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
altair发布了新的文献求助20
2分钟前
2分钟前
123发布了新的文献求助10
2分钟前
KUIWU发布了新的文献求助10
2分钟前
琪琪发布了新的文献求助10
2分钟前
2分钟前
白鲜香精完成签到,获得积分10
2分钟前
3分钟前
搜集达人应助端庄亦巧采纳,获得10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
„Semitische Wissenschaften“? 1110
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739324
求助须知:如何正确求助?哪些是违规求助? 5385476
关于积分的说明 15339630
捐赠科研通 4881945
什么是DOI,文献DOI怎么找? 2624022
邀请新用户注册赠送积分活动 1572714
关于科研通互助平台的介绍 1529508