通量平衡分析
基因敲除
计算生物学
焊剂(冶金)
表型
代谢工程
生物
基因
酿酒酵母
代谢通量分析
合成生物学
生物化学
人工智能
计算机科学
化学
新陈代谢
有机化学
作者
Debiao Wu,Feng Xu,Yaying Xu,Mingzhi Huang,Zhimin Li,Ju Chu
标识
DOI:10.1016/j.synbio.2023.12.004
摘要
Metabolic modeling and machine learning (ML) are crucial components of the evolving next-generation tools in systems and synthetic biology, aiming to unravel the intricate relationship between genotype, phenotype, and the environment. Nonetheless, the comprehensive exploration of integrating these two frameworks, and fully harnessing the potential of fluxomic data, remains an unexplored territory. In this study, we present, rigorously evaluate, and compare ML-based techniques for data integration. The hybrid model revealed that the overexpression of six target genes and the knockout of seven target genes contribute to enhanced ethanol production. Specifically, we investigated the influence of succinate dehydrogenase (SDH) on ethanol biosynthesis in
科研通智能强力驱动
Strongly Powered by AbleSci AI