An end-to-end model for multi-view scene text recognition

计算机科学 人工智能 脚本语言 端到端原则 深度学习 水准点(测量) 相似性(几何) 语言模型 鉴定(生物学) 一致性(知识库) 机器学习 成对比较 模式识别(心理学) 自然语言处理 图像(数学) 植物 大地测量学 生物 地理 操作系统
作者
Ayan Banerjee,Palaiahnakote Shivakumara,Sumanta Bhattacharya,Umapada Pal,Cheng-Lin Liu
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:149: 110206-110206 被引量:1
标识
DOI:10.1016/j.patcog.2023.110206
摘要

Due to the increasing applications of surveillance and monitoring such as person re-identification, vehicle re-identification and sports events tracking, the necessity of text detection and end-to-end recognition is also growing. Although the past deep learning-based models have addressed several challenges such as arbitrary-shaped text, multiple scripts, and variations in the geometric structure of characters, the scope of the models is limited to a single view. This paper presents an end-to-end model for text recognition through refining the multi-views of the same scene, which is called E2EMVSTR (End-to-End Model for Multi-View Scene Text Recognition). Considering the common characteristics shared in multi-view texts, we propose a cycle consistency pairwise similarity-based deep learning model to find texts more efficiently in three input views. Further, the extracted texts are supplied to a Siamese network and semi-supervised attention embedding combinational network for obtaining recognition results. The proposed model combines natural language processing and genetic algorithm models to restore missing character information and correct wrong recognition results. In experiments on our multi-view dataset and several benchmark datasets, the proposed method is proven effective compared to the state-of-the-art methods. The dataset and codes will be made available to the public upon acceptance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
光亮天蓉发布了新的文献求助10
刚刚
1秒前
Twilight完成签到,获得积分20
1秒前
菜宝儿完成签到,获得积分10
2秒前
小路发布了新的文献求助10
2秒前
2秒前
无语的不尤完成签到,获得积分10
3秒前
李东东发布了新的文献求助10
4秒前
4秒前
科研通AI5应助肥仔采纳,获得10
5秒前
Orange应助香蕉纹采纳,获得10
5秒前
hui发布了新的文献求助10
6秒前
suliu发布了新的文献求助30
8秒前
奋斗灯泡发布了新的文献求助10
8秒前
研友_VZG7GZ应助吃菜菜采纳,获得10
8秒前
9秒前
从容的白容完成签到,获得积分10
9秒前
heyi完成签到,获得积分10
10秒前
12秒前
Mry完成签到,获得积分10
13秒前
花痴的早晨完成签到,获得积分10
13秒前
浮游应助陈陈采纳,获得10
13秒前
张文博发布了新的文献求助10
14秒前
15秒前
楠楠完成签到,获得积分10
15秒前
思源应助ohm采纳,获得10
16秒前
善学以致用应助科研小辉采纳,获得10
17秒前
17秒前
CipherSage应助夏炫采纳,获得10
18秒前
18秒前
18秒前
稳重的含灵完成签到,获得积分10
19秒前
万能图书馆应助luckyblue采纳,获得10
19秒前
我是老大应助FleurdelisDZhang采纳,获得10
19秒前
zzh完成签到,获得积分10
19秒前
酷波er应助吃菠萝的桃子采纳,获得10
20秒前
21秒前
lbw完成签到,获得积分10
21秒前
22秒前
香蕉纹发布了新的文献求助10
22秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5216056
求助须知:如何正确求助?哪些是违规求助? 4391027
关于积分的说明 13671418
捐赠科研通 4253032
什么是DOI,文献DOI怎么找? 2333551
邀请新用户注册赠送积分活动 1331132
关于科研通互助平台的介绍 1284932