Estimation of photosynthetic parameters from hyperspectral images using optimal deep learning architecture

高光谱成像 人工智能 建筑 深度学习 模式识别(心理学) 估计 光合作用 计算机科学 环境科学 遥感 计算机视觉 工程类 地理 生物 植物 考古 系统工程
作者
Xianzhi Deng,Zhixin Zhang,Xiaolong Hu,Jinmin Li,Shenji Li,Chien-Kun Su,Shuai Du,Liangsheng Shi
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:216: 108540-108540
标识
DOI:10.1016/j.compag.2023.108540
摘要

The maximum carboxylation rate (Vcmax) and maximum electron transport rate (Jmax) of leaves are crucial for comprehending carbon cycling in farmland. Nevertheless, estimating these photosynthetic parameters precisely and rapidly faces a considerable challenge. This study designed an optimal deep learning architecture that accurately extracts photosynthetic parameters from hyperspectral images and evaluated its stability across different crop species. Photosynthetic parameter models jointly driven by hyperspectral images and deep learning were compared with models jointly driven by one-dimensional reflectance and simple machine learning methods, as well as chlorophyll driven models. The proposed optimal deep learning architecture incorporated spatial attention and prior knowledge of spectral indices calculations. Our results demonstrated that the hyperspectral images and deep learning jointly driven models outperformed traditional models. Notably, incorporating the module of spatial attention and spectral indices calculation networks achieved the best estimations for Vcmax25 (R2: 0.86, RMSE: 10.18 μmol m−2 s−1) and Jmax25 (R2: 0.83, RMSE: 24.27 μmol m−2 s−1). In contrast, the performance of the one-dimension reflectance driven models deteriorated (R2: 0.43–0.58, RMSE: 19.71–39.99 μmol m−2 s−1). Moreover, the best architecture was interpreted. Weight analysis revealed that the hyperspectral information on the middle part of the leaf contributed most to photosynthetic parameters. Feature map analysis indicated that the spectral indices calculation module utilized the information of the visible light spectrum. Even though the migration of models across various crop species may lead to a slight degradation, the model performance remained satisfactory after fine-tuning. The proposed deep learning models, which used 3D hyperspectral images for estimation of photosynthetic parameters, outperformed the models jointly driven by 1D reflectance data and conventional machine learning algorithms. The results highlighted the significance of spatial information from hyperspectral images and prior knowledge through spectral indices calculations. Moreover, the stability and effectiveness of the proposed architecture remained excellent across different species. This study presents advanced and highly effective deep learning techniques for evaluating the photosynthetic capacity of crop leaves and modeling the carbon cycle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助安逸1采纳,获得10
2秒前
3秒前
胖橘梨花逻辑猫完成签到 ,获得积分10
7秒前
laura完成签到,获得积分10
8秒前
笨鸟一直飞完成签到,获得积分10
9秒前
10秒前
赘婿应助科研通管家采纳,获得30
10秒前
10秒前
ding应助科研通管家采纳,获得10
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
李健应助科研通管家采纳,获得10
10秒前
Lucas应助科研通管家采纳,获得10
11秒前
111发布了新的文献求助10
14秒前
善学以致用应助GK采纳,获得10
16秒前
16秒前
19秒前
淡然的衣发布了新的文献求助20
20秒前
坚强白玉完成签到,获得积分10
20秒前
安逸1发布了新的文献求助10
22秒前
luo完成签到,获得积分20
24秒前
25秒前
ssss完成签到,获得积分10
26秒前
Akim应助吴小苏采纳,获得10
27秒前
8848k纯帅完成签到,获得积分10
27秒前
今后应助安逸1采纳,获得10
29秒前
烟花应助谦让的雅青采纳,获得10
30秒前
30秒前
33秒前
33秒前
一二三四完成签到,获得积分10
34秒前
醉熏的天薇完成签到,获得积分10
35秒前
36秒前
sltg发布了新的文献求助10
37秒前
ss发布了新的文献求助10
39秒前
大模型应助123456采纳,获得10
40秒前
GK发布了新的文献求助10
40秒前
42秒前
43秒前
谦让的雅青完成签到,获得积分10
43秒前
安逸1发布了新的文献求助10
46秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165460
求助须知:如何正确求助?哪些是违规求助? 2816530
关于积分的说明 7913032
捐赠科研通 2476092
什么是DOI,文献DOI怎么找? 1318663
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388