Estimation of photosynthetic parameters from hyperspectral images using optimal deep learning architecture

高光谱成像 人工智能 建筑 深度学习 模式识别(心理学) 估计 光合作用 计算机科学 环境科学 遥感 计算机视觉 工程类 地理 生物 植物 考古 系统工程
作者
Xianzhi Deng,Zhixin Zhang,Xiaolong Hu,Jinmin Li,Shenji Li,Chien-Kun Su,Shuai Du,Liangsheng Shi
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:216: 108540-108540
标识
DOI:10.1016/j.compag.2023.108540
摘要

The maximum carboxylation rate (Vcmax) and maximum electron transport rate (Jmax) of leaves are crucial for comprehending carbon cycling in farmland. Nevertheless, estimating these photosynthetic parameters precisely and rapidly faces a considerable challenge. This study designed an optimal deep learning architecture that accurately extracts photosynthetic parameters from hyperspectral images and evaluated its stability across different crop species. Photosynthetic parameter models jointly driven by hyperspectral images and deep learning were compared with models jointly driven by one-dimensional reflectance and simple machine learning methods, as well as chlorophyll driven models. The proposed optimal deep learning architecture incorporated spatial attention and prior knowledge of spectral indices calculations. Our results demonstrated that the hyperspectral images and deep learning jointly driven models outperformed traditional models. Notably, incorporating the module of spatial attention and spectral indices calculation networks achieved the best estimations for Vcmax25 (R2: 0.86, RMSE: 10.18 μmol m−2 s−1) and Jmax25 (R2: 0.83, RMSE: 24.27 μmol m−2 s−1). In contrast, the performance of the one-dimension reflectance driven models deteriorated (R2: 0.43–0.58, RMSE: 19.71–39.99 μmol m−2 s−1). Moreover, the best architecture was interpreted. Weight analysis revealed that the hyperspectral information on the middle part of the leaf contributed most to photosynthetic parameters. Feature map analysis indicated that the spectral indices calculation module utilized the information of the visible light spectrum. Even though the migration of models across various crop species may lead to a slight degradation, the model performance remained satisfactory after fine-tuning. The proposed deep learning models, which used 3D hyperspectral images for estimation of photosynthetic parameters, outperformed the models jointly driven by 1D reflectance data and conventional machine learning algorithms. The results highlighted the significance of spatial information from hyperspectral images and prior knowledge through spectral indices calculations. Moreover, the stability and effectiveness of the proposed architecture remained excellent across different species. This study presents advanced and highly effective deep learning techniques for evaluating the photosynthetic capacity of crop leaves and modeling the carbon cycle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lu发布了新的文献求助10
刚刚
NexusExplorer应助Cici采纳,获得10
1秒前
lin发布了新的文献求助10
1秒前
pluto应助完美的流沙采纳,获得10
1秒前
隐形曼青应助蜡笔小新采纳,获得10
1秒前
1秒前
yl发布了新的文献求助10
2秒前
2秒前
脆脆鲨鱼发布了新的文献求助10
3秒前
3秒前
Dominic发布了新的文献求助10
4秒前
怕黑的纸鹤完成签到,获得积分10
4秒前
4秒前
小铁同学完成签到,获得积分10
5秒前
FashionBoy应助微风采纳,获得10
6秒前
吴圳发布了新的文献求助10
6秒前
7秒前
Li完成签到,获得积分10
7秒前
7秒前
7秒前
wendy发布了新的文献求助10
8秒前
聪慧小霜应助快乐科研采纳,获得10
8秒前
汉堡包应助33采纳,获得10
8秒前
瓜了个瓜完成签到,获得积分10
8秒前
Molly0303发布了新的文献求助10
9秒前
深情的冬灵完成签到,获得积分10
9秒前
ayuelei发布了新的文献求助10
9秒前
科研通AI2S应助小怪兽采纳,获得10
9秒前
兔酱发布了新的文献求助10
10秒前
10秒前
直率梦琪关注了科研通微信公众号
10秒前
淡淡半莲发布了新的文献求助10
10秒前
Raymond发布了新的文献求助10
11秒前
行者完成签到,获得积分10
11秒前
11秒前
tangxin发布了新的文献求助10
12秒前
虎子完成签到,获得积分10
12秒前
王多肉发布了新的文献求助10
12秒前
内向采枫完成签到,获得积分10
12秒前
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971078
求助须知:如何正确求助?哪些是违规求助? 3515742
关于积分的说明 11179305
捐赠科研通 3250852
什么是DOI,文献DOI怎么找? 1795501
邀请新用户注册赠送积分活动 875868
科研通“疑难数据库(出版商)”最低求助积分说明 805207