Estimation of photosynthetic parameters from hyperspectral images using optimal deep learning architecture

高光谱成像 人工智能 建筑 深度学习 模式识别(心理学) 估计 光合作用 计算机科学 环境科学 遥感 计算机视觉 工程类 地理 生物 植物 考古 系统工程
作者
Xianzhi Deng,Zhixin Zhang,Xiaolong Hu,Jinmin Li,Shenji Li,Chien-Kun Su,Shuai Du,Liangsheng Shi
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:216: 108540-108540
标识
DOI:10.1016/j.compag.2023.108540
摘要

The maximum carboxylation rate (Vcmax) and maximum electron transport rate (Jmax) of leaves are crucial for comprehending carbon cycling in farmland. Nevertheless, estimating these photosynthetic parameters precisely and rapidly faces a considerable challenge. This study designed an optimal deep learning architecture that accurately extracts photosynthetic parameters from hyperspectral images and evaluated its stability across different crop species. Photosynthetic parameter models jointly driven by hyperspectral images and deep learning were compared with models jointly driven by one-dimensional reflectance and simple machine learning methods, as well as chlorophyll driven models. The proposed optimal deep learning architecture incorporated spatial attention and prior knowledge of spectral indices calculations. Our results demonstrated that the hyperspectral images and deep learning jointly driven models outperformed traditional models. Notably, incorporating the module of spatial attention and spectral indices calculation networks achieved the best estimations for Vcmax25 (R2: 0.86, RMSE: 10.18 μmol m−2 s−1) and Jmax25 (R2: 0.83, RMSE: 24.27 μmol m−2 s−1). In contrast, the performance of the one-dimension reflectance driven models deteriorated (R2: 0.43–0.58, RMSE: 19.71–39.99 μmol m−2 s−1). Moreover, the best architecture was interpreted. Weight analysis revealed that the hyperspectral information on the middle part of the leaf contributed most to photosynthetic parameters. Feature map analysis indicated that the spectral indices calculation module utilized the information of the visible light spectrum. Even though the migration of models across various crop species may lead to a slight degradation, the model performance remained satisfactory after fine-tuning. The proposed deep learning models, which used 3D hyperspectral images for estimation of photosynthetic parameters, outperformed the models jointly driven by 1D reflectance data and conventional machine learning algorithms. The results highlighted the significance of spatial information from hyperspectral images and prior knowledge through spectral indices calculations. Moreover, the stability and effectiveness of the proposed architecture remained excellent across different species. This study presents advanced and highly effective deep learning techniques for evaluating the photosynthetic capacity of crop leaves and modeling the carbon cycle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蒋瑞轩发布了新的文献求助10
1秒前
小鱼儿完成签到,获得积分10
2秒前
旧戏人发布了新的文献求助10
2秒前
shi发布了新的文献求助10
5秒前
5秒前
xiaoliang完成签到,获得积分10
6秒前
6秒前
6秒前
饶丹完成签到,获得积分10
7秒前
轻松的惜芹应助海棠依旧采纳,获得200
7秒前
WSYang完成签到,获得积分10
8秒前
Akim应助shen采纳,获得10
10秒前
10秒前
DT发布了新的文献求助10
11秒前
赖晨靓发布了新的文献求助10
13秒前
酷酷的爆米花完成签到,获得积分10
15秒前
16秒前
18秒前
大个应助小虫采纳,获得10
18秒前
11完成签到,获得积分10
19秒前
19秒前
乐乐应助shi采纳,获得10
20秒前
王祉萱发布了新的文献求助10
21秒前
Avvei完成签到,获得积分10
21秒前
21秒前
路路发布了新的文献求助10
23秒前
英俊的铭应助notsoeasy采纳,获得10
23秒前
Aono完成签到 ,获得积分10
24秒前
研友_VZG7GZ应助11采纳,获得10
24秒前
自由的凛发布了新的文献求助10
25秒前
25秒前
沉默的半凡完成签到,获得积分10
26秒前
海棠依旧给海棠依旧的求助进行了留言
26秒前
27秒前
28秒前
小虫完成签到,获得积分10
29秒前
Deng完成签到,获得积分10
29秒前
29秒前
科目三应助科研通管家采纳,获得10
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976253
求助须知:如何正确求助?哪些是违规求助? 3520405
关于积分的说明 11203301
捐赠科研通 3257028
什么是DOI,文献DOI怎么找? 1798589
邀请新用户注册赠送积分活动 877755
科研通“疑难数据库(出版商)”最低求助积分说明 806521