Double-attention mechanism-based segmentation grasping detection network

计算机科学 人工智能 分割 图像分割 计算机视觉 机制(生物学) 模式识别(心理学) 认识论 哲学
作者
Qinghua Li,Xuyang Wang,Kun Zhang,Yiran Yang,Chao Feng
出处
期刊:Journal of Electronic Imaging [SPIE]
卷期号:33 (02)
标识
DOI:10.1117/1.jei.33.2.023012
摘要

In practical scenarios, detecting and grasping objects accurately can be very challenging due to the uncertainty of their positions and orientations, as well as environmental interference. Especially when the target object is occluded by other objects, traditional machine vision methods have difficulty in accurately recognizing it. To address this problem, we propose the double-attention mechanism-based segmentation grasping detection network (DAM-SGNET). DAM-SGNET is a technique used for detecting and grasping objects accurately in cluttered environments. It utilizes a deep neural network that incorporates two attention mechanisms to predict the optimal grasping posture for RGB images at the pixel level without relying on depth images. The method begins by reannotating datasets, such as the Cornell dataset, cluttered scenes objects dataset, and VMRD dataset, with a new labeling method proposed by previous researchers. These datasets are then used to train an occlusion detection model. DAM-SGNET uses a residual network (SERESNET) with channel attention mechanisms to extract features from the images, and an adaptive decoder including a feature pyramid deformation network and an efficient channel attention module to enhance robustness in cluttered, unstructured open environments. DAM-SGNET ultimately achieves grasp detection accuracy of 99.43%, 99.24%, and 85.38% for the official Cornell grasp dataset, the cluttered scenes grasping dataset, and the VMRD grasping dataset, respectively. Real-world experiments demonstrate the efficacy of DAM-SGNET in self-built robotic arm platforms, achieving a single-target grasping success rate of 99.6%, and an average grasping success rate of 96.46% for cluttered stacked objects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wt发布了新的文献求助20
刚刚
rosyw发布了新的文献求助10
刚刚
霸气的小土豆完成签到 ,获得积分10
刚刚
王缪芸发布了新的文献求助10
1秒前
lll完成签到 ,获得积分10
1秒前
蒲琪完成签到,获得积分10
1秒前
ningwu发布了新的文献求助10
2秒前
梁小雨完成签到 ,获得积分10
2秒前
万能图书馆应助DavidShaw采纳,获得10
3秒前
是danoo发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助30
7秒前
活力妙芙完成签到 ,获得积分10
7秒前
serapy完成签到,获得积分10
7秒前
8秒前
大个应助焦恩俊采纳,获得10
9秒前
酷波er应助执着皮皮虾采纳,获得10
9秒前
小叶子发布了新的文献求助10
9秒前
9秒前
大个应助liuliu采纳,获得10
10秒前
10秒前
11完成签到,获得积分10
11秒前
11秒前
12秒前
今夜有雨完成签到 ,获得积分10
13秒前
13秒前
桐桐应助根深者叶茂采纳,获得10
13秒前
ballball233发布了新的文献求助10
14秒前
NexusExplorer应助科研通管家采纳,获得30
14秒前
kingwill发布了新的文献求助30
14秒前
克劳修斯发布了新的文献求助10
15秒前
上官若男应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
orixero应助科研通管家采纳,获得10
15秒前
FashionBoy应助科研通管家采纳,获得100
15秒前
浮游应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5114705
求助须知:如何正确求助?哪些是违规求助? 4321984
关于积分的说明 13467476
捐赠科研通 4153626
什么是DOI,文献DOI怎么找? 2275948
邀请新用户注册赠送积分活动 1277982
关于科研通互助平台的介绍 1215920