Double-attention mechanism-based segmentation grasping detection network

计算机科学 人工智能 分割 图像分割 计算机视觉 机制(生物学) 模式识别(心理学) 哲学 认识论
作者
Qinghua Li,Xuyang Wang,Kun Zhang,Yiran Yang,Chao Feng
出处
期刊:Journal of Electronic Imaging [SPIE]
卷期号:33 (02)
标识
DOI:10.1117/1.jei.33.2.023012
摘要

In practical scenarios, detecting and grasping objects accurately can be very challenging due to the uncertainty of their positions and orientations, as well as environmental interference. Especially when the target object is occluded by other objects, traditional machine vision methods have difficulty in accurately recognizing it. To address this problem, we propose the double-attention mechanism-based segmentation grasping detection network (DAM-SGNET). DAM-SGNET is a technique used for detecting and grasping objects accurately in cluttered environments. It utilizes a deep neural network that incorporates two attention mechanisms to predict the optimal grasping posture for RGB images at the pixel level without relying on depth images. The method begins by reannotating datasets, such as the Cornell dataset, cluttered scenes objects dataset, and VMRD dataset, with a new labeling method proposed by previous researchers. These datasets are then used to train an occlusion detection model. DAM-SGNET uses a residual network (SERESNET) with channel attention mechanisms to extract features from the images, and an adaptive decoder including a feature pyramid deformation network and an efficient channel attention module to enhance robustness in cluttered, unstructured open environments. DAM-SGNET ultimately achieves grasp detection accuracy of 99.43%, 99.24%, and 85.38% for the official Cornell grasp dataset, the cluttered scenes grasping dataset, and the VMRD grasping dataset, respectively. Real-world experiments demonstrate the efficacy of DAM-SGNET in self-built robotic arm platforms, achieving a single-target grasping success rate of 99.6%, and an average grasping success rate of 96.46% for cluttered stacked objects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Tine发布了新的文献求助10
1秒前
1秒前
Chelry发布了新的文献求助10
1秒前
你ya完成签到 ,获得积分10
1秒前
小丸子完成签到,获得积分10
1秒前
搜集达人应助YHT采纳,获得10
2秒前
3秒前
wanci应助小包包采纳,获得10
3秒前
3秒前
DADing发布了新的文献求助20
3秒前
四叶草发布了新的文献求助50
4秒前
无花果应助ppppp采纳,获得10
5秒前
5秒前
刘运丽发布了新的文献求助10
5秒前
DX发布了新的文献求助10
5秒前
5秒前
小余同学发布了新的文献求助10
5秒前
6秒前
俭朴的三德完成签到,获得积分10
6秒前
可爱的函函应助虾仁采纳,获得10
7秒前
8秒前
8秒前
雄图完成签到,获得积分10
8秒前
CAOHOU举报小夫同学求助涉嫌违规
9秒前
9秒前
9秒前
852应助哈哈哈哈采纳,获得10
9秒前
xc41992发布了新的文献求助10
9秒前
研究生发布了新的文献求助10
9秒前
思源应助ccc采纳,获得20
9秒前
和谐续发布了新的文献求助10
10秒前
研友_851KE8发布了新的文献求助10
10秒前
superbanggg发布了新的文献求助30
10秒前
DX完成签到,获得积分10
10秒前
Jasper应助boyue采纳,获得10
11秒前
yookia应助小光采纳,获得10
11秒前
我是老大应助yangyangyang采纳,获得10
11秒前
思源应助微笑的傲安采纳,获得10
12秒前
zyx发布了新的文献求助10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958299
求助须知:如何正确求助?哪些是违规求助? 3504528
关于积分的说明 11118735
捐赠科研通 3235777
什么是DOI,文献DOI怎么找? 1788506
邀请新用户注册赠送积分活动 871225
科研通“疑难数据库(出版商)”最低求助积分说明 802600