亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Double-attention mechanism-based segmentation grasping detection network

计算机科学 人工智能 分割 图像分割 计算机视觉 机制(生物学) 模式识别(心理学) 认识论 哲学
作者
Qinghua Li,Xuyang Wang,Kun Zhang,Yiran Yang,Chao Feng
出处
期刊:Journal of Electronic Imaging [SPIE - International Society for Optical Engineering]
卷期号:33 (02)
标识
DOI:10.1117/1.jei.33.2.023012
摘要

In practical scenarios, detecting and grasping objects accurately can be very challenging due to the uncertainty of their positions and orientations, as well as environmental interference. Especially when the target object is occluded by other objects, traditional machine vision methods have difficulty in accurately recognizing it. To address this problem, we propose the double-attention mechanism-based segmentation grasping detection network (DAM-SGNET). DAM-SGNET is a technique used for detecting and grasping objects accurately in cluttered environments. It utilizes a deep neural network that incorporates two attention mechanisms to predict the optimal grasping posture for RGB images at the pixel level without relying on depth images. The method begins by reannotating datasets, such as the Cornell dataset, cluttered scenes objects dataset, and VMRD dataset, with a new labeling method proposed by previous researchers. These datasets are then used to train an occlusion detection model. DAM-SGNET uses a residual network (SERESNET) with channel attention mechanisms to extract features from the images, and an adaptive decoder including a feature pyramid deformation network and an efficient channel attention module to enhance robustness in cluttered, unstructured open environments. DAM-SGNET ultimately achieves grasp detection accuracy of 99.43%, 99.24%, and 85.38% for the official Cornell grasp dataset, the cluttered scenes grasping dataset, and the VMRD grasping dataset, respectively. Real-world experiments demonstrate the efficacy of DAM-SGNET in self-built robotic arm platforms, achieving a single-target grasping success rate of 99.6%, and an average grasping success rate of 96.46% for cluttered stacked objects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI6应助霸气小懒虫采纳,获得30
1秒前
量子星尘发布了新的文献求助10
5秒前
科研通AI2S应助七月采纳,获得10
9秒前
kky完成签到 ,获得积分10
13秒前
奈思完成签到 ,获得积分10
14秒前
15秒前
29秒前
45秒前
在水一方应助科研通管家采纳,获得10
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
Jasper应助CC采纳,获得10
2分钟前
Zhaoyli发布了新的文献求助10
2分钟前
2分钟前
萝卜猪完成签到,获得积分10
2分钟前
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
会会完成签到 ,获得积分20
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
yys10l完成签到,获得积分10
4分钟前
yys完成签到,获得积分10
4分钟前
4分钟前
5分钟前
5分钟前
QCB完成签到 ,获得积分10
5分钟前
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413316
求助须知:如何正确求助?哪些是违规求助? 4530416
关于积分的说明 14122927
捐赠科研通 4445494
什么是DOI,文献DOI怎么找? 2439208
邀请新用户注册赠送积分活动 1431244
关于科研通互助平台的介绍 1408756