Lauren W. Taylor,Rodney D. Priestley,Richard A. Register
出处
期刊:Macromolecules [American Chemical Society] 日期:2024-01-16卷期号:57 (3): 916-925被引量:2
标识
DOI:10.1021/acs.macromol.3c02111
摘要
The phase behavior of polymers in solution is of both fundamental and practical interest. Previous work using coarse-grained molecular simulations suggests that the critical temperature (Tc) of macromolecules in solution can be controlled by the monomer sequence. Here, we experimentally investigated the solution phase behavior of a series of styrene–isoprene copolymers in both styrene- and isoprene-selective solvents. Across the series, the copolymers had a similar overall composition and molecular weight but subtle changes in the monomer sequence obtained by systematically placing a short homopolymer block of either polystyrene or polyisoprene at the end or the center of an otherwise random styrene–isoprene copolymer chain. Compared with a fully random copolymer, sequences that microphase-separate to form starlike or crew-cut micelles produce a lower Tc. Conversely, sequences that do not form micelles exhibit a higher Tc. Through a delicate balance of solvent/polymer compatibility, we demonstrate the spontaneous and thermoreversible formation of unusually large (aggregation number, ∼1000), stable crew-cut micelles. Despite the unusual structure, the thermodynamics of formation of these crew-cut micelles is similar to that of starlike block copolymer micelles.