Detection of Coronary Artery Disease Based on Clinical Phonocardiogram and Multiscale Attention Convolutional Compression Network

计算机科学 心音图 计算机辅助设计 特征提取 人工智能 模式识别(心理学) 卷积神经网络 特征(语言学) 特征选择 语言学 工程类 哲学 工程制图
作者
Chongbo Yin,Yineng Zheng,Xiaorong Ding,Yan Shi,Jian Qin,Xingming Guo
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (3): 1353-1362 被引量:1
标识
DOI:10.1109/jbhi.2024.3354832
摘要

Heart sound is an important physiological signal that contains rich pathological information related with coronary stenosis. Thus, some machine learning methods are developed to detect coronary artery disease (CAD) based on phonocardiogram (PCG). However, current methods lack sufficient clinical dataset and fail to achieve efficient feature utilization. Besides, the methods require complex processing steps including empirical feature extraction and classifier design. To achieve efficient CAD detection, we propose the multiscale attention convolutional compression network (MACCN) based on clinical PCG dataset. Firstly, PCG dataset including 102 CAD subjects and 82 non-CAD subjects was established. Then, a multiscale convolution structure was developed to catch comprehensive heart sound features and a channel attention module was developed to enhance key features in multiscale attention convolutional block (MACB). Finally, a separate downsampling block was proposed to reduce feature losses. MACCN combining the blocks can automatically extract features without empirical and manual feature selection. It obtains good classification results with accuracy 93.43%, sensitivity 93.44%, precision 93.48%, and F1 score 93.42%. The study implies that MACCN performs effective PCG feature mining aiming for CAD detection. Further, it integrates feature extraction and classification and provides a simplified PCG processing case.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
敏感妙竹完成签到,获得积分10
1秒前
Jasper应助kaka091采纳,获得10
1秒前
2秒前
Hhhh完成签到 ,获得积分10
2秒前
msd2phd完成签到,获得积分10
2秒前
夏末发布了新的文献求助10
2秒前
4秒前
summer发布了新的文献求助10
4秒前
4秒前
酷波er应助稳重茹嫣采纳,获得30
4秒前
4秒前
啾啾发布了新的文献求助10
5秒前
5秒前
好好完成签到,获得积分10
6秒前
搞怪的羊发布了新的文献求助10
6秒前
6秒前
NexusExplorer应助敏感妙竹采纳,获得10
6秒前
123发布了新的文献求助10
7秒前
7秒前
xiaosu发布了新的文献求助200
8秒前
8秒前
搞学术发布了新的文献求助10
8秒前
打工人发布了新的文献求助10
8秒前
汉堡包应助白羊采纳,获得10
9秒前
11秒前
11秒前
11秒前
斯文尔白完成签到 ,获得积分10
11秒前
ZQP发布了新的文献求助10
12秒前
嘉嘉琦发布了新的文献求助10
13秒前
夏末完成签到,获得积分10
13秒前
alei1203发布了新的文献求助10
13秒前
hfbbaby完成签到,获得积分10
14秒前
简单发布了新的文献求助10
15秒前
将将发布了新的文献求助10
15秒前
pobbo完成签到,获得积分10
15秒前
烟花应助xx-xxx采纳,获得10
16秒前
16秒前
斯文败类应助ZQP采纳,获得10
17秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137994
求助须知:如何正确求助?哪些是违规求助? 2788986
关于积分的说明 7789404
捐赠科研通 2445432
什么是DOI,文献DOI怎么找? 1300328
科研通“疑难数据库(出版商)”最低求助积分说明 625900
版权声明 601046