Detection of Coronary Artery Disease Based on Clinical Phonocardiogram and Multiscale Attention Convolutional Compression Network

计算机科学 心音图 计算机辅助设计 特征提取 人工智能 模式识别(心理学) 卷积神经网络 特征(语言学) 特征选择 语言学 哲学 工程制图 工程类
作者
Chongbo Yin,Yineng Zheng,Xiaorong Ding,Yan Shi,Jian Qin,Xingming Guo
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (3): 1353-1362 被引量:8
标识
DOI:10.1109/jbhi.2024.3354832
摘要

Heart sound is an important physiological signal that contains rich pathological information related with coronary stenosis. Thus, some machine learning methods are developed to detect coronary artery disease (CAD) based on phonocardiogram (PCG). However, current methods lack sufficient clinical dataset and fail to achieve efficient feature utilization. Besides, the methods require complex processing steps including empirical feature extraction and classifier design. To achieve efficient CAD detection, we propose the multiscale attention convolutional compression network (MACCN) based on clinical PCG dataset. Firstly, PCG dataset including 102 CAD subjects and 82 non-CAD subjects was established. Then, a multiscale convolution structure was developed to catch comprehensive heart sound features and a channel attention module was developed to enhance key features in multiscale attention convolutional block (MACB). Finally, a separate downsampling block was proposed to reduce feature losses. MACCN combining the blocks can automatically extract features without empirical and manual feature selection. It obtains good classification results with accuracy 93.43%, sensitivity 93.44%, precision 93.48%, and F1 score 93.42%. The study implies that MACCN performs effective PCG feature mining aiming for CAD detection. Further, it integrates feature extraction and classification and provides a simplified PCG processing case.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
NexusExplorer应助ming采纳,获得10
刚刚
刚刚
1秒前
1秒前
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
1秒前
2秒前
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
2秒前
枭声应助科研通管家采纳,获得10
2秒前
yanyan应助科研通管家采纳,获得30
2秒前
Sea_U应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
yanyan应助科研通管家采纳,获得15
2秒前
子昂应助科研通管家采纳,获得10
2秒前
所所应助LockheedChengdu采纳,获得10
4秒前
科研搬运工完成签到,获得积分10
6秒前
哈哈哈哈完成签到,获得积分10
6秒前
shiyin完成签到,获得积分10
6秒前
6秒前
HarrisonChan完成签到,获得积分10
8秒前
9秒前
陈秋迎发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
杨小鸿发布了新的文献求助10
11秒前
HK完成签到,获得积分10
12秒前
花花完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742261
求助须知:如何正确求助?哪些是违规求助? 5407364
关于积分的说明 15344547
捐赠科研通 4883713
什么是DOI,文献DOI怎么找? 2625203
邀请新用户注册赠送积分活动 1574062
关于科研通互助平台的介绍 1531044