Machine learning for hospital readmission prediction in pediatric population

随机森林 决策树 布里氏评分 逻辑回归 机器学习 接收机工作特性 尤登J统计 人工智能 医学 梯度升压 计算机科学 超参数优化 统计 支持向量机 数学
作者
Nayara Cristina da Silva,Marcelo Keese Albertini,André Ricardo Backes,Geórgia das Graças Pena
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:244: 107980-107980 被引量:13
标识
DOI:10.1016/j.cmpb.2023.107980
摘要

Pediatric readmissions are a burden on patients, families, and the healthcare system. In order to identify patients at higher readmission risk, more accurate techniques, as machine learning (ML), could be a good strategy to expand the knowledge in this area. The aim of this study was to develop predictive models capable of identifying children and adolescents at high risk of potentially avoidable 30-day readmission using ML.Retrospective cohort study was carried out with 9,080 patients under 18 years old admitted to a tertiary university hospital. Demographic, clinical, and biochemical data were collected from electronic databases. We randomly divided the dataset into training (75 %) and testing (25 %), applied downsampling, repeated cross-validation with five folds and ten repetitions, and the hyperparameter was optimized of each technique using a grid search via racing with ANOVA models. We applied six ML classification algorithms to build the predictive models, including classification and regression tree (CART), random forest (RF), gradient boosting machine (GBM), extreme gradient boosting (XGBoost), decision tree and logistic regression (LR). The area under the receiver operating curve (AUC), sensitivity, specificity, Youden's J-index and accuracy were used to evaluate the performance of each model.The avoidable 30-day hospital readmissions rate was 9.5 %. Some algorithms presented similar AUC, both in the dataset training and in the dataset testing, such as XGBoost, RF, GBM and CART. Considering the Youden's J-index, the algorithm that presented the best index was XGBoost with bagging imputation, with AUC of 0.814 (J-index of 0.484). Cancer diagnosis, age, red blood cells, leukocytes, red cell distribution width and sodium levels, elective admission, and multimorbidity were the most important characteristics to classify between readmission and non-readmission groups.Machine learning approaches, especially XGBoost, can predict potentially avoidable 30-day pediatric hospital readmission into tertiary assistance. If implemented in the computer hospital system, our model can help in the early and more accurate identification of patients at readmission risk, targeting health strategic interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助cyzbruce采纳,获得10
2秒前
Xu完成签到,获得积分20
3秒前
时代更迭完成签到 ,获得积分10
5秒前
成就钧发布了新的文献求助10
5秒前
又又完成签到,获得积分10
6秒前
afterglow完成签到 ,获得积分10
8秒前
liao完成签到 ,获得积分10
8秒前
笨笨忘幽完成签到,获得积分0
12秒前
Pomelo发布了新的文献求助10
18秒前
彭于晏应助成就钧采纳,获得10
18秒前
卜小卜完成签到,获得积分10
19秒前
CLTTT完成签到,获得积分0
20秒前
Neko完成签到,获得积分10
22秒前
Pomelo完成签到,获得积分20
25秒前
123完成签到,获得积分10
29秒前
专注的觅云完成签到 ,获得积分10
35秒前
大模型应助xiaoweiba采纳,获得10
46秒前
舒克发布了新的文献求助20
51秒前
启程完成签到 ,获得积分10
56秒前
舒克完成签到,获得积分20
1分钟前
gyy完成签到 ,获得积分10
1分钟前
小文子完成签到 ,获得积分10
1分钟前
儒雅的如松完成签到 ,获得积分10
1分钟前
华仔应助科研通管家采纳,获得10
1分钟前
老驴拉磨完成签到 ,获得积分10
1分钟前
xy完成签到 ,获得积分10
1分钟前
aq22完成签到 ,获得积分10
1分钟前
黑眼圈完成签到 ,获得积分10
2分钟前
秋夜临完成签到,获得积分0
2分钟前
迅速的幻雪完成签到 ,获得积分10
2分钟前
GLv完成签到,获得积分10
2分钟前
草莓熊1215完成签到 ,获得积分10
2分钟前
聪慧的石头完成签到 ,获得积分10
2分钟前
pep完成签到 ,获得积分10
2分钟前
广阔天地完成签到 ,获得积分10
2分钟前
河鲸完成签到 ,获得积分10
2分钟前
Oliver完成签到 ,获得积分10
3分钟前
Kevin完成签到,获得积分10
3分钟前
www完成签到 ,获得积分10
3分钟前
ll完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910590
求助须知:如何正确求助?哪些是违规求助? 4186398
关于积分的说明 12999406
捐赠科研通 3953882
什么是DOI,文献DOI怎么找? 2168175
邀请新用户注册赠送积分活动 1186601
关于科研通互助平台的介绍 1093798