Machine learning for hospital readmission prediction in pediatric population

随机森林 决策树 布里氏评分 逻辑回归 机器学习 接收机工作特性 尤登J统计 人工智能 医学 梯度升压 计算机科学 超参数优化 统计 支持向量机 数学
作者
Nayara Cristina da Silva,Marcelo Keese Albertini,André Ricardo Backes,Geórgia das Graças Pena
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:244: 107980-107980 被引量:13
标识
DOI:10.1016/j.cmpb.2023.107980
摘要

Pediatric readmissions are a burden on patients, families, and the healthcare system. In order to identify patients at higher readmission risk, more accurate techniques, as machine learning (ML), could be a good strategy to expand the knowledge in this area. The aim of this study was to develop predictive models capable of identifying children and adolescents at high risk of potentially avoidable 30-day readmission using ML.Retrospective cohort study was carried out with 9,080 patients under 18 years old admitted to a tertiary university hospital. Demographic, clinical, and biochemical data were collected from electronic databases. We randomly divided the dataset into training (75 %) and testing (25 %), applied downsampling, repeated cross-validation with five folds and ten repetitions, and the hyperparameter was optimized of each technique using a grid search via racing with ANOVA models. We applied six ML classification algorithms to build the predictive models, including classification and regression tree (CART), random forest (RF), gradient boosting machine (GBM), extreme gradient boosting (XGBoost), decision tree and logistic regression (LR). The area under the receiver operating curve (AUC), sensitivity, specificity, Youden's J-index and accuracy were used to evaluate the performance of each model.The avoidable 30-day hospital readmissions rate was 9.5 %. Some algorithms presented similar AUC, both in the dataset training and in the dataset testing, such as XGBoost, RF, GBM and CART. Considering the Youden's J-index, the algorithm that presented the best index was XGBoost with bagging imputation, with AUC of 0.814 (J-index of 0.484). Cancer diagnosis, age, red blood cells, leukocytes, red cell distribution width and sodium levels, elective admission, and multimorbidity were the most important characteristics to classify between readmission and non-readmission groups.Machine learning approaches, especially XGBoost, can predict potentially avoidable 30-day pediatric hospital readmission into tertiary assistance. If implemented in the computer hospital system, our model can help in the early and more accurate identification of patients at readmission risk, targeting health strategic interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贰叁伍完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
英俊白莲发布了新的文献求助10
1秒前
1秒前
闪闪沂完成签到,获得积分10
1秒前
ytj发布了新的文献求助10
2秒前
2秒前
李爱国应助快乐小子采纳,获得10
2秒前
小飞象来喽完成签到,获得积分10
3秒前
4秒前
涂汉文发布了新的文献求助10
4秒前
甜甜圈发布了新的文献求助10
4秒前
5秒前
悦書发布了新的文献求助10
6秒前
韶雅山完成签到,获得积分20
6秒前
vvvvyl完成签到,获得积分10
6秒前
研友_VZG7GZ应助Shinewei采纳,获得10
6秒前
7秒前
7秒前
dytdt发布了新的文献求助10
7秒前
orixero应助柍踏采纳,获得100
8秒前
Stephennnn完成签到,获得积分10
8秒前
wewawj完成签到,获得积分10
8秒前
柒柒完成签到,获得积分10
8秒前
李爱国应助dzzza采纳,获得10
8秒前
鹿立轩完成签到,获得积分10
8秒前
合适凡发布了新的文献求助10
9秒前
完美世界应助稚生w采纳,获得10
9秒前
乳酸菌发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
yugy发布了新的文献求助10
11秒前
浮游应助meimei采纳,获得10
11秒前
11秒前
布曲发布了新的文献求助10
12秒前
肖承祥发布了新的文献求助10
12秒前
吃人不眨眼应助熊啾啾采纳,获得20
13秒前
甜甜圈完成签到,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5551713
求助须知:如何正确求助?哪些是违规求助? 4636568
关于积分的说明 14644524
捐赠科研通 4578430
什么是DOI,文献DOI怎么找? 2510815
邀请新用户注册赠送积分活动 1486102
关于科研通互助平台的介绍 1457449