Machine learning for hospital readmission prediction in pediatric population

随机森林 决策树 布里氏评分 逻辑回归 机器学习 接收机工作特性 尤登J统计 人工智能 医学 梯度升压 计算机科学 超参数优化 统计 支持向量机 数学
作者
Nayara Cristina da Silva,Marcelo Keese Albertini,André Ricardo Backes,Geórgia das Graças Pena
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:244: 107980-107980 被引量:12
标识
DOI:10.1016/j.cmpb.2023.107980
摘要

Pediatric readmissions are a burden on patients, families, and the healthcare system. In order to identify patients at higher readmission risk, more accurate techniques, as machine learning (ML), could be a good strategy to expand the knowledge in this area. The aim of this study was to develop predictive models capable of identifying children and adolescents at high risk of potentially avoidable 30-day readmission using ML.Retrospective cohort study was carried out with 9,080 patients under 18 years old admitted to a tertiary university hospital. Demographic, clinical, and biochemical data were collected from electronic databases. We randomly divided the dataset into training (75 %) and testing (25 %), applied downsampling, repeated cross-validation with five folds and ten repetitions, and the hyperparameter was optimized of each technique using a grid search via racing with ANOVA models. We applied six ML classification algorithms to build the predictive models, including classification and regression tree (CART), random forest (RF), gradient boosting machine (GBM), extreme gradient boosting (XGBoost), decision tree and logistic regression (LR). The area under the receiver operating curve (AUC), sensitivity, specificity, Youden's J-index and accuracy were used to evaluate the performance of each model.The avoidable 30-day hospital readmissions rate was 9.5 %. Some algorithms presented similar AUC, both in the dataset training and in the dataset testing, such as XGBoost, RF, GBM and CART. Considering the Youden's J-index, the algorithm that presented the best index was XGBoost with bagging imputation, with AUC of 0.814 (J-index of 0.484). Cancer diagnosis, age, red blood cells, leukocytes, red cell distribution width and sodium levels, elective admission, and multimorbidity were the most important characteristics to classify between readmission and non-readmission groups.Machine learning approaches, especially XGBoost, can predict potentially avoidable 30-day pediatric hospital readmission into tertiary assistance. If implemented in the computer hospital system, our model can help in the early and more accurate identification of patients at readmission risk, targeting health strategic interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
张同学快去做实验呀完成签到,获得积分10
刚刚
木子木子李完成签到,获得积分10
1秒前
画画完成签到,获得积分10
1秒前
子叶叶子完成签到,获得积分10
1秒前
1秒前
遂安完成签到,获得积分10
2秒前
2秒前
华仔应助z_king_d_23采纳,获得10
2秒前
2秒前
2秒前
苹果发布了新的文献求助10
3秒前
GG发布了新的文献求助10
3秒前
彭于晏应助erhan7采纳,获得30
3秒前
orixero应助meiyugao采纳,获得10
4秒前
亦玉完成签到,获得积分10
4秒前
4秒前
JamesPei应助刘文莉采纳,获得10
4秒前
weijie发布了新的文献求助10
5秒前
Jenaloe发布了新的文献求助10
6秒前
maofeng发布了新的文献求助10
6秒前
NexusExplorer应助abcc1234采纳,获得10
6秒前
小刺猬完成签到,获得积分10
6秒前
辛辛点灯完成签到 ,获得积分10
7秒前
fsky发布了新的文献求助30
7秒前
桐桐应助yyl采纳,获得10
8秒前
ryt完成签到,获得积分10
8秒前
void科学家发布了新的文献求助10
8秒前
wwk发布了新的文献求助10
8秒前
ilzhuzhu发布了新的文献求助10
8秒前
wxd完成签到,获得积分10
10秒前
10秒前
11秒前
14秒前
昭奚完成签到 ,获得积分10
15秒前
晚凝完成签到,获得积分10
15秒前
Yan0909完成签到,获得积分10
15秒前
薛定谔的猫完成签到,获得积分10
15秒前
李健应助自然有手就行采纳,获得10
15秒前
罗中翠完成签到,获得积分10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582