Machine learning for hospital readmission prediction in pediatric population

随机森林 决策树 布里氏评分 逻辑回归 机器学习 接收机工作特性 尤登J统计 人工智能 医学 梯度升压 计算机科学 超参数优化 统计 支持向量机 数学
作者
Nayara Cristina da Silva,Marcelo Keese Albertini,André Ricardo Backes,Geórgia das Graças Pena
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:244: 107980-107980 被引量:13
标识
DOI:10.1016/j.cmpb.2023.107980
摘要

Pediatric readmissions are a burden on patients, families, and the healthcare system. In order to identify patients at higher readmission risk, more accurate techniques, as machine learning (ML), could be a good strategy to expand the knowledge in this area. The aim of this study was to develop predictive models capable of identifying children and adolescents at high risk of potentially avoidable 30-day readmission using ML.Retrospective cohort study was carried out with 9,080 patients under 18 years old admitted to a tertiary university hospital. Demographic, clinical, and biochemical data were collected from electronic databases. We randomly divided the dataset into training (75 %) and testing (25 %), applied downsampling, repeated cross-validation with five folds and ten repetitions, and the hyperparameter was optimized of each technique using a grid search via racing with ANOVA models. We applied six ML classification algorithms to build the predictive models, including classification and regression tree (CART), random forest (RF), gradient boosting machine (GBM), extreme gradient boosting (XGBoost), decision tree and logistic regression (LR). The area under the receiver operating curve (AUC), sensitivity, specificity, Youden's J-index and accuracy were used to evaluate the performance of each model.The avoidable 30-day hospital readmissions rate was 9.5 %. Some algorithms presented similar AUC, both in the dataset training and in the dataset testing, such as XGBoost, RF, GBM and CART. Considering the Youden's J-index, the algorithm that presented the best index was XGBoost with bagging imputation, with AUC of 0.814 (J-index of 0.484). Cancer diagnosis, age, red blood cells, leukocytes, red cell distribution width and sodium levels, elective admission, and multimorbidity were the most important characteristics to classify between readmission and non-readmission groups.Machine learning approaches, especially XGBoost, can predict potentially avoidable 30-day pediatric hospital readmission into tertiary assistance. If implemented in the computer hospital system, our model can help in the early and more accurate identification of patients at readmission risk, targeting health strategic interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助666采纳,获得10
刚刚
可爱半凡发布了新的文献求助10
刚刚
刚刚
1秒前
EliGolden发布了新的文献求助10
1秒前
1秒前
www发布了新的文献求助10
2秒前
鱼yuyu完成签到,获得积分10
2秒前
2秒前
粽粽发布了新的文献求助10
2秒前
plumcute完成签到,获得积分10
2秒前
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
霜序完成签到 ,获得积分10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
研友_VZG7GZ应助Om采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
3秒前
BowieHuang应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
3秒前
小鱼应助科研通管家采纳,获得10
4秒前
mylove应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
4秒前
李健应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
大模型应助科研通管家采纳,获得10
4秒前
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618857
求助须知:如何正确求助?哪些是违规求助? 4703798
关于积分的说明 14923864
捐赠科研通 4758637
什么是DOI,文献DOI怎么找? 2550264
邀请新用户注册赠送积分活动 1513097
关于科研通互助平台的介绍 1474401