Machine learning for hospital readmission prediction in pediatric population

随机森林 决策树 布里氏评分 逻辑回归 机器学习 接收机工作特性 尤登J统计 人工智能 医学 梯度升压 计算机科学 超参数优化 统计 支持向量机 数学
作者
Nayara Cristina da Silva,Marcelo Keese Albertini,André Ricardo Backes,Geórgia das Graças Pena
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:244: 107980-107980 被引量:13
标识
DOI:10.1016/j.cmpb.2023.107980
摘要

Pediatric readmissions are a burden on patients, families, and the healthcare system. In order to identify patients at higher readmission risk, more accurate techniques, as machine learning (ML), could be a good strategy to expand the knowledge in this area. The aim of this study was to develop predictive models capable of identifying children and adolescents at high risk of potentially avoidable 30-day readmission using ML.Retrospective cohort study was carried out with 9,080 patients under 18 years old admitted to a tertiary university hospital. Demographic, clinical, and biochemical data were collected from electronic databases. We randomly divided the dataset into training (75 %) and testing (25 %), applied downsampling, repeated cross-validation with five folds and ten repetitions, and the hyperparameter was optimized of each technique using a grid search via racing with ANOVA models. We applied six ML classification algorithms to build the predictive models, including classification and regression tree (CART), random forest (RF), gradient boosting machine (GBM), extreme gradient boosting (XGBoost), decision tree and logistic regression (LR). The area under the receiver operating curve (AUC), sensitivity, specificity, Youden's J-index and accuracy were used to evaluate the performance of each model.The avoidable 30-day hospital readmissions rate was 9.5 %. Some algorithms presented similar AUC, both in the dataset training and in the dataset testing, such as XGBoost, RF, GBM and CART. Considering the Youden's J-index, the algorithm that presented the best index was XGBoost with bagging imputation, with AUC of 0.814 (J-index of 0.484). Cancer diagnosis, age, red blood cells, leukocytes, red cell distribution width and sodium levels, elective admission, and multimorbidity were the most important characteristics to classify between readmission and non-readmission groups.Machine learning approaches, especially XGBoost, can predict potentially avoidable 30-day pediatric hospital readmission into tertiary assistance. If implemented in the computer hospital system, our model can help in the early and more accurate identification of patients at readmission risk, targeting health strategic interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Echo发布了新的文献求助10
刚刚
pinecone发布了新的文献求助10
1秒前
加油呀发布了新的文献求助30
2秒前
2秒前
TXY完成签到,获得积分10
3秒前
孝顺的觅风完成签到 ,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
6秒前
科目三应助pisinaverde采纳,获得10
6秒前
7秒前
小沫沫发布了新的文献求助10
7秒前
8秒前
8秒前
MCst完成签到,获得积分10
8秒前
科研通AI6应助zzzxhhr采纳,获得10
9秒前
jack_kunn完成签到,获得积分10
10秒前
半胖发布了新的文献求助30
10秒前
小古发布了新的文献求助10
12秒前
小古发布了新的文献求助30
12秒前
小古发布了新的文献求助10
12秒前
听汐发布了新的文献求助10
12秒前
12秒前
小半完成签到,获得积分10
13秒前
10711发布了新的文献求助10
13秒前
李博士发布了新的文献求助10
13秒前
正直的爆米花完成签到 ,获得积分10
13秒前
14秒前
14秒前
14秒前
丸子完成签到,获得积分10
14秒前
喜悦的铭发布了新的文献求助30
15秒前
15秒前
orixero应助Echo采纳,获得10
16秒前
17秒前
时尚的尔蓝完成签到,获得积分20
17秒前
yy发布了新的文献求助10
18秒前
zzzz发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642142
求助须知:如何正确求助?哪些是违规求助? 4758300
关于积分的说明 15016687
捐赠科研通 4800688
什么是DOI,文献DOI怎么找? 2566186
邀请新用户注册赠送积分活动 1524265
关于科研通互助平台的介绍 1483901