Machine learning for hospital readmission prediction in pediatric population

随机森林 决策树 布里氏评分 逻辑回归 机器学习 接收机工作特性 尤登J统计 人工智能 医学 梯度升压 计算机科学 超参数优化 统计 支持向量机 数学
作者
Nayara Cristina da Silva,Marcelo Keese Albertini,André Ricardo Backes,Geórgia das Graças Pena
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:244: 107980-107980 被引量:13
标识
DOI:10.1016/j.cmpb.2023.107980
摘要

Pediatric readmissions are a burden on patients, families, and the healthcare system. In order to identify patients at higher readmission risk, more accurate techniques, as machine learning (ML), could be a good strategy to expand the knowledge in this area. The aim of this study was to develop predictive models capable of identifying children and adolescents at high risk of potentially avoidable 30-day readmission using ML.Retrospective cohort study was carried out with 9,080 patients under 18 years old admitted to a tertiary university hospital. Demographic, clinical, and biochemical data were collected from electronic databases. We randomly divided the dataset into training (75 %) and testing (25 %), applied downsampling, repeated cross-validation with five folds and ten repetitions, and the hyperparameter was optimized of each technique using a grid search via racing with ANOVA models. We applied six ML classification algorithms to build the predictive models, including classification and regression tree (CART), random forest (RF), gradient boosting machine (GBM), extreme gradient boosting (XGBoost), decision tree and logistic regression (LR). The area under the receiver operating curve (AUC), sensitivity, specificity, Youden's J-index and accuracy were used to evaluate the performance of each model.The avoidable 30-day hospital readmissions rate was 9.5 %. Some algorithms presented similar AUC, both in the dataset training and in the dataset testing, such as XGBoost, RF, GBM and CART. Considering the Youden's J-index, the algorithm that presented the best index was XGBoost with bagging imputation, with AUC of 0.814 (J-index of 0.484). Cancer diagnosis, age, red blood cells, leukocytes, red cell distribution width and sodium levels, elective admission, and multimorbidity were the most important characteristics to classify between readmission and non-readmission groups.Machine learning approaches, especially XGBoost, can predict potentially avoidable 30-day pediatric hospital readmission into tertiary assistance. If implemented in the computer hospital system, our model can help in the early and more accurate identification of patients at readmission risk, targeting health strategic interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
承乐应助xiexie采纳,获得10
刚刚
hhan发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
我是老大应助大真真采纳,获得10
4秒前
丰富老鼠完成签到,获得积分10
4秒前
4秒前
sally发布了新的文献求助10
4秒前
柒月小鱼完成签到 ,获得积分10
5秒前
xupeng完成签到,获得积分10
5秒前
5秒前
pluto应助虚心的芹采纳,获得10
6秒前
6秒前
sisii完成签到,获得积分10
6秒前
慕青应助lala采纳,获得10
7秒前
大个应助jl采纳,获得10
7秒前
优美紫槐发布了新的文献求助10
8秒前
77wlr完成签到,获得积分10
9秒前
小高发布了新的文献求助10
10秒前
思源应助SDNUDRUG采纳,获得10
10秒前
10秒前
11秒前
11秒前
英姑应助大胆的尔岚采纳,获得10
11秒前
lXQ发布了新的文献求助10
11秒前
公子凌发布了新的文献求助10
11秒前
anmeiii发布了新的文献求助200
12秒前
12秒前
函数完成签到 ,获得积分10
13秒前
6666应助沉默水瑶采纳,获得10
14秒前
16秒前
16秒前
16秒前
sisii发布了新的文献求助30
17秒前
叶光大完成签到 ,获得积分10
17秒前
17秒前
有魅力雪青完成签到,获得积分10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5605669
求助须知:如何正确求助?哪些是违规求助? 4690288
关于积分的说明 14863003
捐赠科研通 4702367
什么是DOI,文献DOI怎么找? 2542226
邀请新用户注册赠送积分活动 1507853
关于科研通互助平台的介绍 1472142