Machine learning for hospital readmission prediction in pediatric population

随机森林 决策树 布里氏评分 逻辑回归 机器学习 接收机工作特性 尤登J统计 人工智能 医学 梯度升压 计算机科学 超参数优化 统计 支持向量机 数学
作者
Nayara Cristina da Silva,Marcelo Keese Albertini,André Ricardo Backes,Geórgia das Graças Pena
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:244: 107980-107980 被引量:3
标识
DOI:10.1016/j.cmpb.2023.107980
摘要

Pediatric readmissions are a burden on patients, families, and the healthcare system. In order to identify patients at higher readmission risk, more accurate techniques, as machine learning (ML), could be a good strategy to expand the knowledge in this area. The aim of this study was to develop predictive models capable of identifying children and adolescents at high risk of potentially avoidable 30-day readmission using ML.Retrospective cohort study was carried out with 9,080 patients under 18 years old admitted to a tertiary university hospital. Demographic, clinical, and biochemical data were collected from electronic databases. We randomly divided the dataset into training (75 %) and testing (25 %), applied downsampling, repeated cross-validation with five folds and ten repetitions, and the hyperparameter was optimized of each technique using a grid search via racing with ANOVA models. We applied six ML classification algorithms to build the predictive models, including classification and regression tree (CART), random forest (RF), gradient boosting machine (GBM), extreme gradient boosting (XGBoost), decision tree and logistic regression (LR). The area under the receiver operating curve (AUC), sensitivity, specificity, Youden's J-index and accuracy were used to evaluate the performance of each model.The avoidable 30-day hospital readmissions rate was 9.5 %. Some algorithms presented similar AUC, both in the dataset training and in the dataset testing, such as XGBoost, RF, GBM and CART. Considering the Youden's J-index, the algorithm that presented the best index was XGBoost with bagging imputation, with AUC of 0.814 (J-index of 0.484). Cancer diagnosis, age, red blood cells, leukocytes, red cell distribution width and sodium levels, elective admission, and multimorbidity were the most important characteristics to classify between readmission and non-readmission groups.Machine learning approaches, especially XGBoost, can predict potentially avoidable 30-day pediatric hospital readmission into tertiary assistance. If implemented in the computer hospital system, our model can help in the early and more accurate identification of patients at readmission risk, targeting health strategic interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
OK佛发布了新的文献求助10
刚刚
2秒前
霍巧凡发布了新的文献求助10
2秒前
4秒前
yyy发布了新的文献求助10
4秒前
5秒前
盐碱地的小草完成签到 ,获得积分10
5秒前
5秒前
惊鸿完成签到,获得积分10
6秒前
thefan发布了新的文献求助10
6秒前
专注的语堂完成签到,获得积分10
7秒前
huangJP发布了新的文献求助10
8秒前
zhaoyaoshi完成签到 ,获得积分10
8秒前
冷傲以珊完成签到,获得积分10
8秒前
chao完成签到,获得积分10
8秒前
苏紫梗桔完成签到,获得积分10
9秒前
华北走地鸡完成签到,获得积分10
9秒前
11秒前
11秒前
11秒前
杨文文完成签到 ,获得积分10
11秒前
13秒前
棉籽完成签到 ,获得积分10
13秒前
淋漓尽致完成签到,获得积分10
14秒前
chao发布了新的文献求助10
15秒前
小二郎应助糖果采纳,获得20
16秒前
dandelion完成签到,获得积分10
16秒前
炙热的河马应助huangJP采纳,获得10
18秒前
18秒前
脑洞疼应助jeep先生采纳,获得10
19秒前
19秒前
故城发布了新的文献求助10
20秒前
活力菠萝完成签到,获得积分10
20秒前
21秒前
小猫最受发布了新的文献求助10
22秒前
搜集达人应助独行侠采纳,获得10
24秒前
zhangr完成签到 ,获得积分10
25秒前
杨文文关注了科研通微信公众号
28秒前
白了个白完成签到 ,获得积分10
29秒前
奋进中的科研小菜鸟完成签到,获得积分20
30秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139996
求助须知:如何正确求助?哪些是违规求助? 2790894
关于积分的说明 7796961
捐赠科研通 2447258
什么是DOI,文献DOI怎么找? 1301779
科研通“疑难数据库(出版商)”最低求助积分说明 626340
版权声明 601194