Low-carbon-oriented commercial district urban form optimization and impact assessment analysis

北京 多目标优化 参数统计 环境科学 帕累托原理 数学优化 计算机科学 块(置换群论) 可再生能源 最优化问题 网格 环境工程 工程类 数学 统计 地理 考古 几何学 电气工程 中国
作者
Jingjing Wang,Wenxiang Liu,Xiuli Du,Weirong Zhang
出处
期刊:Building and Environment [Elsevier]
卷期号:254: 111377-111377 被引量:3
标识
DOI:10.1016/j.buildenv.2024.111377
摘要

Commercial buildings have become one of the main sources of carbon emissions. However, the current research on urban form optimization has lacked analyses of the low-carbon indicators of buildings. With the Beijing commercial district as an example, a low-carbon-oriented urban form optimization path is established in this study, and a new method of urban form optimization is developed from a low-carbon perspective. With the help of the parametric platform and multiobjective optimization algorithm, a dynamic optimization model of urban morphology based on parametric modeling, numerical simulation and algorithm optimization is developed, and the morphological characteristics of low-carbon commercial blocks in Beijing are assessed with a Pareto-optimal solution set. Through principal component regression analysis, the correlations between urban form factors and low-carbon evaluation indicators are discussed. The study shows that the multiobjective optimization algorithm effectively optimizes the low-carbon indicators of buildings at the block scale. The urban forms obtained from the Pareto solution set display several commonalities reflected from three perspectives: building type, vertical dimension and building orientation. It is found that the optimal block layout form reduces the building carbon emission intensity and the building outer skin radiation difference, and the renewable energy-based carbon reduction is large. The urban form factors that have a significant impact on the carbon emission intensity of buildings include the maintenance coefficients, the average area to perimeter ratio, and the sky view factor, with respective impact coefficients of 0.301, −0.309, and −0.319.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
研究牲完成签到,获得积分10
1秒前
hyhyhyhy发布了新的文献求助20
2秒前
2秒前
四月完成签到,获得积分10
3秒前
742完成签到,获得积分10
3秒前
ccyrichard发布了新的文献求助10
3秒前
清脆的水蜜桃完成签到,获得积分20
3秒前
4秒前
4秒前
耍酷芹菜完成签到,获得积分10
4秒前
4秒前
隐形曼青应助洁净的雪一采纳,获得10
4秒前
轻松水蓝完成签到,获得积分20
5秒前
CDreamY发布了新的文献求助10
5秒前
5秒前
qjq完成签到 ,获得积分10
6秒前
6秒前
开朗依霜发布了新的文献求助30
7秒前
田様应助努力哥采纳,获得10
8秒前
背后翩跹发布了新的文献求助10
8秒前
轻松水蓝发布了新的文献求助10
9秒前
cloud发布了新的文献求助10
11秒前
ccyrichard完成签到,获得积分10
11秒前
所所应助巫马尔槐采纳,获得10
11秒前
Lucas应助pasdzxcfvgb采纳,获得10
11秒前
科研通AI2S应助pura卷卷采纳,获得10
11秒前
lll完成签到,获得积分10
12秒前
撒西不理完成签到,获得积分10
12秒前
丫丫发布了新的文献求助10
12秒前
jianglu发布了新的文献求助10
12秒前
luoyutian完成签到 ,获得积分10
12秒前
ShowMaker应助稀奇采纳,获得20
13秒前
定雨寒完成签到,获得积分20
13秒前
小二郎应助动人的如松采纳,获得10
13秒前
13秒前
隐形曼青应助明亮映阳采纳,获得10
13秒前
mpenny77应助来自三百采纳,获得30
14秒前
mpenny77应助来自三百采纳,获得20
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149112
求助须知:如何正确求助?哪些是违规求助? 2800154
关于积分的说明 7838819
捐赠科研通 2457690
什么是DOI,文献DOI怎么找? 1307972
科研通“疑难数据库(出版商)”最低求助积分说明 628363
版权声明 601706