A materials informatics framework based on reduced‐order models for extracting structure–property linkages of additively manufactured continuous fiber‐reinforced polymer composites

材料科学 复合材料 财产(哲学) 纤维 聚合物 认识论 哲学
作者
Yawen Zhang,Shanshan Shi,Yunzhuo Lu,Bingzhi Chen,Zuyan Xu,Jianxin Xu,Bingzhi Chen
出处
期刊:Polymer Composites [Wiley]
标识
DOI:10.1002/pc.28238
摘要

Abstract The innovative combination of additive manufacturing (AM) and continuous fiber‐reinforced polymer composites (CFRPCs) confers products with the dual advantages of integrated manufacturing and designability of properties, but lack an efficient and reliable method for property prediction. This study presents a materials informatics framework using reduced‐order models and machine learning (ML) to extract the structure–property (SP) linkages between microstructures and macroscopic elastic properties of AM‐CFRPCs. The initial step involves generating microstructural 2D cross‐sections and representative volume elements (RVEs) with random fiber and pore distributions based on the minimum potential method. Then, finite element (FE) calculations are performed on RVEs to obtain nine macroscopic elastic properties. Following that, the quantification and dimensionality reduction of the 2D cross‐sectional dataset are conducted separately using two‐point spatial correlations and principal component analysis (PCA). Finally, a Bayesian optimized composite kernel support vector regression (CK‐SVR) algorithm is used to effectively establish complex mapping relationships between the reduced‐order representations of the microstructures and the mechanical properties. Despite the reduced‐order dataset containing only 3–6 variables, the framework generates an interpretable model exhibiting excellent accuracy with all predicted R 2 values surpassing 0.91. Therefore, this framework presents a prospective solution for expediting the design and optimization of AM‐CFRPCs. Highlights A materials informatics scheme is proposed to predict the 9 elastic properties of AM‐CFRPCs. Microstructures are quantified and dimensionally reduced by two‐point statistics and PCA. SP linkages are established between 2D cross‐sections and 3D macromechanical properties. Modified CK‐SVR exhibits higher prediction accuracy compared to conventional models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梅一一完成签到,获得积分10
刚刚
Nuyoah发布了新的文献求助20
刚刚
1秒前
1秒前
hello完成签到,获得积分10
2秒前
追梦人2016完成签到 ,获得积分10
3秒前
3秒前
好困完成签到,获得积分0
3秒前
瑾笙完成签到 ,获得积分10
4秒前
syhjxk完成签到,获得积分10
4秒前
6秒前
CO2完成签到,获得积分10
6秒前
悦耳易完成签到,获得积分10
7秒前
甜甜凉面完成签到,获得积分10
7秒前
义气小白菜完成签到 ,获得积分10
8秒前
零渊完成签到,获得积分10
8秒前
zqingxia完成签到,获得积分10
8秒前
在搬砖的大美完成签到,获得积分10
9秒前
浥青竹完成签到,获得积分10
10秒前
恶恶么v完成签到,获得积分10
11秒前
Molly完成签到,获得积分20
12秒前
阿诺完成签到,获得积分10
12秒前
12秒前
恐怖稽器人完成签到,获得积分10
13秒前
zzzzz完成签到,获得积分10
14秒前
中书完成签到,获得积分10
14秒前
111完成签到 ,获得积分10
14秒前
14秒前
小背包完成签到 ,获得积分10
16秒前
yuanletong完成签到 ,获得积分10
16秒前
阿斯披粼完成签到,获得积分10
16秒前
XuChen发布了新的文献求助10
17秒前
李银锋完成签到,获得积分10
18秒前
科研王子完成签到,获得积分10
19秒前
felix发布了新的文献求助10
19秒前
徐什么宝完成签到,获得积分10
20秒前
20秒前
Xiangyang完成签到 ,获得积分10
20秒前
sheep完成签到,获得积分10
20秒前
脑洞疼应助XuChen采纳,获得10
21秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142849
求助须知:如何正确求助?哪些是违规求助? 2793788
关于积分的说明 7807722
捐赠科研通 2450106
什么是DOI,文献DOI怎么找? 1303653
科研通“疑难数据库(出版商)”最低求助积分说明 627017
版权声明 601350