Assessing the extent of land degradation in the eThekwini municipality using land cover change and soil organic carbon

土地退化 土地覆盖 专题制图器 环境科学 土地利用 灌木丛 土壤碳 遥感 变更检测 土地利用、土地利用的变化和林业 碳储量 水文学(农业) 生态系统 地理 土壤科学 气候变化 卫星图像 生态学 地质学 岩土工程 土壤水分 生物
作者
Mthokozisi Ndumiso Mzuzuwentokozo Buthelezi,Romano Lottering,Kabir Peerbhay,Onisimo Mutanga
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:45 (4): 1339-1367
标识
DOI:10.1080/01431161.2024.2307945
摘要

More than 75% of the global land has already suffered degradation, leading to the recognition of land degradation as one of the foremost challenges society faces. This recognition stems from its profound adverse impacts on natural ecosystem functioning, biodiversity, soil productivity, and food availability. Consequently, understanding the spatial distribution of land degradation across all scales becomes imperative. This study employed land cover change and soil organic carbon (SOC) stock assessments to analyse land degradation within the eThekwini Municipality beyond the baseline period (2000–2015). Utilizing remote sensing and machine learning techniques, this research examined land degradation within the eThekwini Municipality over the period spanning 2000 to 2022. Landsat 7 (Enhanced Thematic Mapper Plus – ETM+), Landsat 8 (Operational Land Imager 1 - OLI1), and Landsat 9 (Operational Land Imager 2 - OLI2) images were employed to extract variables for both land cover change and SOC stock prediction through XGBoost, LightGBM, Random Forest (RF), and Support Vector Machine (SVM) models. Among these models, LightGBM demonstrates superior performance, achieving an overall accuracy of 80.646 in land cover predictions and 77.869 in SOC stock predictions. Analysis of land cover change within the eThekwini Municipality unveiled a shift from forests and shrubland landscapes to cropland and built-up areas. This shift results in the municipality encountering losses in SOC stock between 2015 and 2022. The model predicted that most SOC stock losses occur at the 20–50 cm depth (9.27%), in comparison to the 7.21% loss at the 0–20 cm depth. These findings underscore the pivotal role of remote sensing and machine learning in aiding policymakers to assess land degradation and implement pertinent measures to enhance the landscape.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zz完成签到 ,获得积分20
1秒前
无聊的翠芙完成签到,获得积分10
2秒前
sweety01232发布了新的文献求助30
4秒前
lijinyu发布了新的文献求助10
7秒前
7秒前
lzx举报求助违规成功
10秒前
kingwill举报求助违规成功
10秒前
MchemG举报求助违规成功
10秒前
10秒前
柴犬发布了新的文献求助10
11秒前
傲娇的咖啡豆完成签到,获得积分10
12秒前
herpes完成签到 ,获得积分10
14秒前
YamDaamCaa应助sweety01232采纳,获得30
15秒前
lijinyu完成签到,获得积分10
16秒前
WangVera完成签到,获得积分10
16秒前
闪闪映易完成签到,获得积分10
16秒前
科研通AI5应助Eason小川采纳,获得10
17秒前
鱼贝贝完成签到 ,获得积分10
17秒前
张志远完成签到,获得积分20
19秒前
19秒前
领导范儿应助HH采纳,获得10
19秒前
HP完成签到,获得积分10
22秒前
Vivian完成签到,获得积分10
23秒前
24秒前
WFLLL完成签到,获得积分10
25秒前
26秒前
xi完成签到,获得积分10
27秒前
鳗鱼白竹完成签到,获得积分10
28秒前
隐形曼青应助科研通管家采纳,获得10
28秒前
Rubby应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
天天快乐应助科研通管家采纳,获得10
28秒前
28秒前
28秒前
汉堡包应助科研通管家采纳,获得10
28秒前
28秒前
香蕉觅云应助科研通管家采纳,获得10
28秒前
29秒前
踏实采波完成签到,获得积分10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965786
求助须知:如何正确求助?哪些是违规求助? 3511071
关于积分的说明 11156136
捐赠科研通 3245633
什么是DOI,文献DOI怎么找? 1793097
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804268