Assessing the extent of land degradation in the eThekwini municipality using land cover change and soil organic carbon

土地退化 土地覆盖 专题制图器 环境科学 土地利用 灌木丛 土壤碳 遥感 变更检测 土地利用、土地利用的变化和林业 碳储量 水文学(农业) 生态系统 地理 土壤科学 气候变化 卫星图像 生态学 地质学 岩土工程 土壤水分 生物
作者
Mthokozisi Ndumiso Mzuzuwentokozo Buthelezi,Romano Lottering,Kabir Peerbhay,Onisimo Mutanga
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:45 (4): 1339-1367
标识
DOI:10.1080/01431161.2024.2307945
摘要

More than 75% of the global land has already suffered degradation, leading to the recognition of land degradation as one of the foremost challenges society faces. This recognition stems from its profound adverse impacts on natural ecosystem functioning, biodiversity, soil productivity, and food availability. Consequently, understanding the spatial distribution of land degradation across all scales becomes imperative. This study employed land cover change and soil organic carbon (SOC) stock assessments to analyse land degradation within the eThekwini Municipality beyond the baseline period (2000–2015). Utilizing remote sensing and machine learning techniques, this research examined land degradation within the eThekwini Municipality over the period spanning 2000 to 2022. Landsat 7 (Enhanced Thematic Mapper Plus – ETM+), Landsat 8 (Operational Land Imager 1 - OLI1), and Landsat 9 (Operational Land Imager 2 - OLI2) images were employed to extract variables for both land cover change and SOC stock prediction through XGBoost, LightGBM, Random Forest (RF), and Support Vector Machine (SVM) models. Among these models, LightGBM demonstrates superior performance, achieving an overall accuracy of 80.646 in land cover predictions and 77.869 in SOC stock predictions. Analysis of land cover change within the eThekwini Municipality unveiled a shift from forests and shrubland landscapes to cropland and built-up areas. This shift results in the municipality encountering losses in SOC stock between 2015 and 2022. The model predicted that most SOC stock losses occur at the 20–50 cm depth (9.27%), in comparison to the 7.21% loss at the 0–20 cm depth. These findings underscore the pivotal role of remote sensing and machine learning in aiding policymakers to assess land degradation and implement pertinent measures to enhance the landscape.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
米诺团子发布了新的文献求助10
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
清新完成签到,获得积分10
1秒前
hfzxlzy发布了新的文献求助10
3秒前
CC完成签到 ,获得积分10
4秒前
4秒前
kezhang完成签到,获得积分10
5秒前
5秒前
吕小布发布了新的文献求助10
6秒前
7秒前
7秒前
娃娃菜妮完成签到,获得积分10
7秒前
万万没想到完成签到,获得积分10
8秒前
8秒前
搜集达人应助hd采纳,获得10
9秒前
赘婿应助丢丢银采纳,获得10
9秒前
9秒前
科研人才完成签到 ,获得积分10
11秒前
风清扬应助可爱的老司机采纳,获得30
12秒前
清新的苑博完成签到,获得积分10
12秒前
CYQ发布了新的文献求助10
12秒前
慕青应助嘻嘻采纳,获得10
13秒前
复杂的薯片完成签到,获得积分10
14秒前
CipherSage应助曹小妍采纳,获得10
14秒前
16秒前
Cisplatin发布了新的文献求助10
17秒前
Yin完成签到,获得积分10
18秒前
20秒前
充电宝应助belly采纳,获得10
20秒前
20秒前
20秒前
朱颜发布了新的文献求助10
21秒前
狗子哥完成签到,获得积分10
21秒前
Hello应助kenna123采纳,获得10
21秒前
22秒前
lll完成签到 ,获得积分10
22秒前
彭于晏应助王涛采纳,获得10
22秒前
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458527
求助须知:如何正确求助?哪些是违规求助? 4564580
关于积分的说明 14295592
捐赠科研通 4489446
什么是DOI,文献DOI怎么找? 2459080
邀请新用户注册赠送积分活动 1448864
关于科研通互助平台的介绍 1424474