Assessing the extent of land degradation in the eThekwini municipality using land cover change and soil organic carbon

土地退化 土地覆盖 专题制图器 环境科学 土地利用 灌木丛 土壤碳 遥感 变更检测 土地利用、土地利用的变化和林业 碳储量 水文学(农业) 生态系统 地理 土壤科学 气候变化 卫星图像 生态学 地质学 岩土工程 土壤水分 生物
作者
Mthokozisi Ndumiso Mzuzuwentokozo Buthelezi,Romano Lottering,Kabir Peerbhay,Onisimo Mutanga
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:45 (4): 1339-1367
标识
DOI:10.1080/01431161.2024.2307945
摘要

More than 75% of the global land has already suffered degradation, leading to the recognition of land degradation as one of the foremost challenges society faces. This recognition stems from its profound adverse impacts on natural ecosystem functioning, biodiversity, soil productivity, and food availability. Consequently, understanding the spatial distribution of land degradation across all scales becomes imperative. This study employed land cover change and soil organic carbon (SOC) stock assessments to analyse land degradation within the eThekwini Municipality beyond the baseline period (2000–2015). Utilizing remote sensing and machine learning techniques, this research examined land degradation within the eThekwini Municipality over the period spanning 2000 to 2022. Landsat 7 (Enhanced Thematic Mapper Plus – ETM+), Landsat 8 (Operational Land Imager 1 - OLI1), and Landsat 9 (Operational Land Imager 2 - OLI2) images were employed to extract variables for both land cover change and SOC stock prediction through XGBoost, LightGBM, Random Forest (RF), and Support Vector Machine (SVM) models. Among these models, LightGBM demonstrates superior performance, achieving an overall accuracy of 80.646 in land cover predictions and 77.869 in SOC stock predictions. Analysis of land cover change within the eThekwini Municipality unveiled a shift from forests and shrubland landscapes to cropland and built-up areas. This shift results in the municipality encountering losses in SOC stock between 2015 and 2022. The model predicted that most SOC stock losses occur at the 20–50 cm depth (9.27%), in comparison to the 7.21% loss at the 0–20 cm depth. These findings underscore the pivotal role of remote sensing and machine learning in aiding policymakers to assess land degradation and implement pertinent measures to enhance the landscape.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
隐形曼青应助沿岸有贝壳采纳,获得10
1秒前
1秒前
KouZL完成签到,获得积分10
1秒前
1秒前
lyx完成签到 ,获得积分10
1秒前
小脚丫发布了新的文献求助10
1秒前
liuliu应助元谷雪采纳,获得10
2秒前
2秒前
无花果应助yueang采纳,获得10
2秒前
果果发布了新的文献求助10
3秒前
道心发布了新的文献求助10
3秒前
mayberichard发布了新的文献求助10
3秒前
yk应助张豪采纳,获得10
4秒前
4秒前
4秒前
5秒前
小小咸鱼发布了新的文献求助20
5秒前
5秒前
JOE发布了新的文献求助10
5秒前
5秒前
虚幻代芙发布了新的文献求助10
5秒前
6秒前
研友_xLOMQZ完成签到,获得积分10
6秒前
邵洋完成签到,获得积分10
6秒前
lily完成签到,获得积分10
7秒前
kinlin发布了新的文献求助10
7秒前
yyyyyy发布了新的文献求助10
8秒前
wyh798发布了新的文献求助10
8秒前
Ava应助yana采纳,获得10
8秒前
8秒前
顾矜应助潮辞采纳,获得10
8秒前
lshl2000发布了新的文献求助10
9秒前
9秒前
10秒前
小思发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
小白发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648325
求助须知:如何正确求助?哪些是违规求助? 4775345
关于积分的说明 15043906
捐赠科研通 4807336
什么是DOI,文献DOI怎么找? 2570747
邀请新用户注册赠送积分活动 1527484
关于科研通互助平台的介绍 1486437