Assessing the extent of land degradation in the eThekwini municipality using land cover change and soil organic carbon

土地退化 土地覆盖 专题制图器 环境科学 土地利用 灌木丛 土壤碳 遥感 变更检测 土地利用、土地利用的变化和林业 碳储量 水文学(农业) 生态系统 地理 土壤科学 气候变化 卫星图像 生态学 地质学 岩土工程 土壤水分 生物
作者
Mthokozisi Ndumiso Mzuzuwentokozo Buthelezi,Romano Lottering,Kabir Peerbhay,Onisimo Mutanga
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:45 (4): 1339-1367
标识
DOI:10.1080/01431161.2024.2307945
摘要

More than 75% of the global land has already suffered degradation, leading to the recognition of land degradation as one of the foremost challenges society faces. This recognition stems from its profound adverse impacts on natural ecosystem functioning, biodiversity, soil productivity, and food availability. Consequently, understanding the spatial distribution of land degradation across all scales becomes imperative. This study employed land cover change and soil organic carbon (SOC) stock assessments to analyse land degradation within the eThekwini Municipality beyond the baseline period (2000–2015). Utilizing remote sensing and machine learning techniques, this research examined land degradation within the eThekwini Municipality over the period spanning 2000 to 2022. Landsat 7 (Enhanced Thematic Mapper Plus – ETM+), Landsat 8 (Operational Land Imager 1 - OLI1), and Landsat 9 (Operational Land Imager 2 - OLI2) images were employed to extract variables for both land cover change and SOC stock prediction through XGBoost, LightGBM, Random Forest (RF), and Support Vector Machine (SVM) models. Among these models, LightGBM demonstrates superior performance, achieving an overall accuracy of 80.646 in land cover predictions and 77.869 in SOC stock predictions. Analysis of land cover change within the eThekwini Municipality unveiled a shift from forests and shrubland landscapes to cropland and built-up areas. This shift results in the municipality encountering losses in SOC stock between 2015 and 2022. The model predicted that most SOC stock losses occur at the 20–50 cm depth (9.27%), in comparison to the 7.21% loss at the 0–20 cm depth. These findings underscore the pivotal role of remote sensing and machine learning in aiding policymakers to assess land degradation and implement pertinent measures to enhance the landscape.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈琳发布了新的文献求助10
刚刚
1秒前
李洁完成签到,获得积分20
1秒前
找KGO完成签到,获得积分10
1秒前
李健应助金金采纳,获得10
1秒前
planet发布了新的文献求助10
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
小哦嘿应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
zhonglv7应助科研通管家采纳,获得10
2秒前
DD完成签到,获得积分20
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
liao应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
小哦嘿应助科研通管家采纳,获得10
3秒前
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
英姑应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
4秒前
长情笑柳应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
Kenny发布了新的文献求助30
4秒前
Hello应助科研通管家采纳,获得10
5秒前
小哦嘿应助科研通管家采纳,获得10
5秒前
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
5秒前
浮游应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
无极微光应助科研通管家采纳,获得20
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684860
求助须知:如何正确求助?哪些是违规求助? 5039294
关于积分的说明 15185532
捐赠科研通 4843973
什么是DOI,文献DOI怎么找? 2597078
邀请新用户注册赠送积分活动 1549661
关于科研通互助平台的介绍 1508145