Multi-state modeling of antibody-antigen complexes with SAXS profiles and deep-learning models

小角X射线散射 表位 抗体 抗原 表征(材料科学) 计算生物学 化学 生物物理学 生物 散射 材料科学 免疫学 纳米技术 物理 光学
作者
Tomer Cohen,Matan Halfon,Lester Carter,Beth Sharkey,Tushar Jain,Arvind Sivasubramanian,Dina Schneidman‐Duhovny
出处
期刊:Methods in Enzymology 卷期号:: 237-262 被引量:1
标识
DOI:10.1016/bs.mie.2022.11.003
摘要

Antibodies are an established class of human therapeutics. Epitope characterization is an important part of therapeutic antibody discovery. However, structural characterization of antibody-antigen complexes remains challenging. On the one hand, X-ray crystallography or cryo-electron microscopy provide atomic resolution characterization of the epitope, but the data collection process is typically long and the success rate is low. On the other hand, computational methods for modeling antibody-antigen structures from the individual components frequently suffer from a high false positive rate, rarely resulting in a unique solution. Recent deep learning models for structure prediction are also successful in predicting protein-protein complexes. However, they do not perform well for antibody-antigen complexes. Small Angle X-ray Scattering (SAXS) is a reliable technique for rapid structural characterization of protein samples in solution albeit at low resolution. Here, we present an integrative approach for modeling antigen-antibody complexes using the antibody sequence, antigen structure, and experimentally determined SAXS profiles of the antibody, antigen, and the complex. The method models antibody structures using a novel deep-learning approach, NanoNet. The structures of the antibodies and antigens are represented using multiple 3D conformations to account for compositional and conformational heterogeneity of the protein samples that are used to collect the SAXS data. The complexes are predicted by integrating the SAXS profiles with scoring functions for protein-protein interfaces that are based on statistical potentials and antibody-specific deep-learning models. We validated the method via application to four Fab:EGFR and one Fab:PCSK9 antibody:antigen complexes with experimentally available SAXS datasets. The integrative approach returns accurate predictions (interface RMSD < 4 Å) in the top five predictions for four out of five complexes (respective interface RMSD values of 1.95, 2.18, 2.66 and 3.87 Å), providing support for the utility of such a computational pipeline for epitope characterization during therapeutic antibody discovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pdf发布了新的文献求助10
1秒前
慕青应助支凤妖采纳,获得10
1秒前
2秒前
z123完成签到,获得积分10
2秒前
乐乐应助1461644768采纳,获得10
3秒前
YUYUYU发布了新的文献求助10
3秒前
长安宁发布了新的文献求助10
3秒前
3秒前
silong发布了新的文献求助10
7秒前
8秒前
9秒前
充电宝应助YUYUYU采纳,获得10
9秒前
尊敬秋双完成签到,获得积分10
9秒前
暮夏钟鼓应助温婉的含芙采纳,获得10
10秒前
三金脚脚完成签到 ,获得积分10
10秒前
桐桐应助万刈采纳,获得10
12秒前
归诚完成签到,获得积分10
13秒前
yuyu完成签到,获得积分10
13秒前
包子牛奶完成签到,获得积分10
14秒前
meinv666发布了新的文献求助50
15秒前
16秒前
yuyu发布了新的文献求助10
16秒前
泡面小猪完成签到,获得积分10
17秒前
123应助兰陵萧笑声采纳,获得10
17秒前
drz完成签到 ,获得积分10
17秒前
yang发布了新的文献求助10
17秒前
Akim应助啊啊啊lei采纳,获得10
18秒前
20秒前
20秒前
幽默的溪灵给DrZ的求助进行了留言
22秒前
思源应助呆呆的猕猴桃采纳,获得10
22秒前
敖哥完成签到,获得积分10
22秒前
无花果应助呦呦采纳,获得10
24秒前
852应助珍惜采纳,获得10
25秒前
25秒前
Tadalafil发布了新的文献求助10
25秒前
m赤子心发布了新的文献求助10
25秒前
25秒前
27秒前
stuffmatter应助JV采纳,获得10
28秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3076162
求助须知:如何正确求助?哪些是违规求助? 2729044
关于积分的说明 7507177
捐赠科研通 2377267
什么是DOI,文献DOI怎么找? 1260526
科研通“疑难数据库(出版商)”最低求助积分说明 611000
版权声明 597164