Multi-state modeling of antibody-antigen complexes with SAXS profiles and deep-learning models

小角X射线散射 表位 抗体 抗原 表征(材料科学) 计算生物学 化学 生物物理学 生物 散射 材料科学 免疫学 纳米技术 物理 光学
作者
Tomer Cohen,Matan Halfon,Lester Carter,Beth Sharkey,Tushar Jain,Arvind Sivasubramanian,Dina Schneidman‐Duhovny
出处
期刊:Methods in Enzymology [Academic Press]
卷期号:: 237-262 被引量:1
标识
DOI:10.1016/bs.mie.2022.11.003
摘要

Antibodies are an established class of human therapeutics. Epitope characterization is an important part of therapeutic antibody discovery. However, structural characterization of antibody-antigen complexes remains challenging. On the one hand, X-ray crystallography or cryo-electron microscopy provide atomic resolution characterization of the epitope, but the data collection process is typically long and the success rate is low. On the other hand, computational methods for modeling antibody-antigen structures from the individual components frequently suffer from a high false positive rate, rarely resulting in a unique solution. Recent deep learning models for structure prediction are also successful in predicting protein-protein complexes. However, they do not perform well for antibody-antigen complexes. Small Angle X-ray Scattering (SAXS) is a reliable technique for rapid structural characterization of protein samples in solution albeit at low resolution. Here, we present an integrative approach for modeling antigen-antibody complexes using the antibody sequence, antigen structure, and experimentally determined SAXS profiles of the antibody, antigen, and the complex. The method models antibody structures using a novel deep-learning approach, NanoNet. The structures of the antibodies and antigens are represented using multiple 3D conformations to account for compositional and conformational heterogeneity of the protein samples that are used to collect the SAXS data. The complexes are predicted by integrating the SAXS profiles with scoring functions for protein-protein interfaces that are based on statistical potentials and antibody-specific deep-learning models. We validated the method via application to four Fab:EGFR and one Fab:PCSK9 antibody:antigen complexes with experimentally available SAXS datasets. The integrative approach returns accurate predictions (interface RMSD < 4 Å) in the top five predictions for four out of five complexes (respective interface RMSD values of 1.95, 2.18, 2.66 and 3.87 Å), providing support for the utility of such a computational pipeline for epitope characterization during therapeutic antibody discovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不安的白昼完成签到 ,获得积分10
刚刚
不知道完成签到,获得积分10
2秒前
2秒前
chebo发布了新的文献求助10
3秒前
一一一应助滕皓轩采纳,获得10
3秒前
一一一应助滕皓轩采纳,获得10
3秒前
科研通AI2S应助滕皓轩采纳,获得10
3秒前
大个应助十曰采纳,获得10
4秒前
li完成签到 ,获得积分10
5秒前
尘埃之影完成签到,获得积分10
7秒前
陶醉的钢笔完成签到 ,获得积分10
8秒前
飞行的子弹完成签到,获得积分20
9秒前
泥花完成签到,获得积分10
9秒前
9秒前
mr_beard完成签到 ,获得积分10
10秒前
岑晓冰完成签到 ,获得积分10
12秒前
啦啦啦完成签到,获得积分10
12秒前
感动的小鸽子完成签到 ,获得积分10
13秒前
lxj完成签到 ,获得积分10
13秒前
无辜的蜗牛完成签到 ,获得积分10
13秒前
xiaojin完成签到,获得积分10
14秒前
程程完成签到,获得积分10
14秒前
duckspy发布了新的文献求助30
14秒前
14秒前
sunyanghu369发布了新的文献求助30
19秒前
hdc12138完成签到,获得积分10
20秒前
飞龙在天完成签到,获得积分0
20秒前
狄淇儿完成签到 ,获得积分10
20秒前
吨吨完成签到,获得积分10
21秒前
小芒果完成签到,获得积分0
25秒前
26秒前
杰克李李完成签到,获得积分10
27秒前
pakiorder完成签到,获得积分20
29秒前
无心的雅霜完成签到,获得积分10
29秒前
1122完成签到,获得积分10
30秒前
王磊完成签到,获得积分10
30秒前
顺心醉蝶完成签到 ,获得积分10
30秒前
量子星尘发布了新的文献求助10
30秒前
zhao完成签到 ,获得积分10
31秒前
yuncong323发布了新的文献求助10
31秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022