Multi-state modeling of antibody-antigen complexes with SAXS profiles and deep-learning models

小角X射线散射 表位 抗体 抗原 表征(材料科学) 计算生物学 化学 生物物理学 生物 散射 材料科学 免疫学 纳米技术 物理 光学
作者
Tomer Cohen,Matan Halfon,Lester Carter,Beth Sharkey,Tushar Jain,Arvind Sivasubramanian,Dina Schneidman‐Duhovny
出处
期刊:Methods in Enzymology [Academic Press]
卷期号:: 237-262 被引量:1
标识
DOI:10.1016/bs.mie.2022.11.003
摘要

Antibodies are an established class of human therapeutics. Epitope characterization is an important part of therapeutic antibody discovery. However, structural characterization of antibody-antigen complexes remains challenging. On the one hand, X-ray crystallography or cryo-electron microscopy provide atomic resolution characterization of the epitope, but the data collection process is typically long and the success rate is low. On the other hand, computational methods for modeling antibody-antigen structures from the individual components frequently suffer from a high false positive rate, rarely resulting in a unique solution. Recent deep learning models for structure prediction are also successful in predicting protein-protein complexes. However, they do not perform well for antibody-antigen complexes. Small Angle X-ray Scattering (SAXS) is a reliable technique for rapid structural characterization of protein samples in solution albeit at low resolution. Here, we present an integrative approach for modeling antigen-antibody complexes using the antibody sequence, antigen structure, and experimentally determined SAXS profiles of the antibody, antigen, and the complex. The method models antibody structures using a novel deep-learning approach, NanoNet. The structures of the antibodies and antigens are represented using multiple 3D conformations to account for compositional and conformational heterogeneity of the protein samples that are used to collect the SAXS data. The complexes are predicted by integrating the SAXS profiles with scoring functions for protein-protein interfaces that are based on statistical potentials and antibody-specific deep-learning models. We validated the method via application to four Fab:EGFR and one Fab:PCSK9 antibody:antigen complexes with experimentally available SAXS datasets. The integrative approach returns accurate predictions (interface RMSD < 4 Å) in the top five predictions for four out of five complexes (respective interface RMSD values of 1.95, 2.18, 2.66 and 3.87 Å), providing support for the utility of such a computational pipeline for epitope characterization during therapeutic antibody discovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fixit发布了新的文献求助10
1秒前
2秒前
ZJY发布了新的文献求助10
4秒前
4秒前
笔至梦花完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
科研通AI2S应助nini采纳,获得20
7秒前
Skuld发布了新的文献求助10
7秒前
9秒前
lhy完成签到,获得积分10
9秒前
10秒前
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
桐桐应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
MchemG应助科研通管家采纳,获得10
12秒前
Liufgui应助科研通管家采纳,获得20
12秒前
MchemG应助科研通管家采纳,获得10
12秒前
义气如萱完成签到 ,获得积分10
12秒前
星辰应助科研通管家采纳,获得10
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
今后应助科研通管家采纳,获得10
12秒前
爆米花应助科研通管家采纳,获得10
12秒前
12秒前
czh应助科研通管家采纳,获得10
12秒前
12秒前
MchemG应助科研通管家采纳,获得10
12秒前
Liufgui应助Araa采纳,获得10
14秒前
张建发布了新的文献求助10
15秒前
huang发布了新的文献求助10
15秒前
16秒前
18秒前
慕青应助俏皮的白柏采纳,获得10
19秒前
潘善若发布了新的文献求助10
19秒前
枫之林发布了新的文献求助10
19秒前
大头发布了新的文献求助10
20秒前
在水一方应助风趣的南霜采纳,获得10
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988975
求助须知:如何正确求助?哪些是违规求助? 3531316
关于积分的说明 11253424
捐赠科研通 3269917
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882063
科研通“疑难数据库(出版商)”最低求助积分说明 809068