清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multi-state modeling of antibody-antigen complexes with SAXS profiles and deep-learning models

小角X射线散射 表位 抗体 抗原 表征(材料科学) 计算生物学 化学 生物物理学 生物 散射 材料科学 免疫学 纳米技术 物理 光学
作者
Tomer Cohen,Matan Halfon,Lester Carter,Beth Sharkey,Tushar Jain,Arvind Sivasubramanian,Dina Schneidman‐Duhovny
出处
期刊:Methods in Enzymology [Academic Press]
卷期号:: 237-262 被引量:1
标识
DOI:10.1016/bs.mie.2022.11.003
摘要

Antibodies are an established class of human therapeutics. Epitope characterization is an important part of therapeutic antibody discovery. However, structural characterization of antibody-antigen complexes remains challenging. On the one hand, X-ray crystallography or cryo-electron microscopy provide atomic resolution characterization of the epitope, but the data collection process is typically long and the success rate is low. On the other hand, computational methods for modeling antibody-antigen structures from the individual components frequently suffer from a high false positive rate, rarely resulting in a unique solution. Recent deep learning models for structure prediction are also successful in predicting protein-protein complexes. However, they do not perform well for antibody-antigen complexes. Small Angle X-ray Scattering (SAXS) is a reliable technique for rapid structural characterization of protein samples in solution albeit at low resolution. Here, we present an integrative approach for modeling antigen-antibody complexes using the antibody sequence, antigen structure, and experimentally determined SAXS profiles of the antibody, antigen, and the complex. The method models antibody structures using a novel deep-learning approach, NanoNet. The structures of the antibodies and antigens are represented using multiple 3D conformations to account for compositional and conformational heterogeneity of the protein samples that are used to collect the SAXS data. The complexes are predicted by integrating the SAXS profiles with scoring functions for protein-protein interfaces that are based on statistical potentials and antibody-specific deep-learning models. We validated the method via application to four Fab:EGFR and one Fab:PCSK9 antibody:antigen complexes with experimentally available SAXS datasets. The integrative approach returns accurate predictions (interface RMSD < 4 Å) in the top five predictions for four out of five complexes (respective interface RMSD values of 1.95, 2.18, 2.66 and 3.87 Å), providing support for the utility of such a computational pipeline for epitope characterization during therapeutic antibody discovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
雪白小丸子完成签到,获得积分10
6秒前
www发布了新的文献求助30
7秒前
蔡从安发布了新的文献求助10
10秒前
脑洞疼应助蔡从安采纳,获得10
17秒前
25秒前
彩色的芷容完成签到 ,获得积分10
55秒前
东郭凝蝶完成签到 ,获得积分10
1分钟前
宇文非笑完成签到 ,获得积分0
1分钟前
1分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
2分钟前
2分钟前
apckkk完成签到 ,获得积分10
3分钟前
3分钟前
YifanWang应助科研通管家采纳,获得20
3分钟前
YifanWang应助科研通管家采纳,获得10
3分钟前
YifanWang应助科研通管家采纳,获得20
3分钟前
默默雪旋完成签到 ,获得积分10
3分钟前
坚强的铅笔完成签到 ,获得积分10
3分钟前
wdy111应助wbh采纳,获得20
3分钟前
无限晓蓝完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
ceeray23发布了新的文献求助20
4分钟前
XIA完成签到 ,获得积分10
4分钟前
喜悦的香之完成签到 ,获得积分10
4分钟前
嘻嘻哈哈啊完成签到 ,获得积分10
4分钟前
科研佟完成签到 ,获得积分10
4分钟前
Skywalk满天星完成签到,获得积分10
4分钟前
心想事成完成签到 ,获得积分10
4分钟前
Lny发布了新的文献求助10
4分钟前
通科研完成签到 ,获得积分10
5分钟前
在水一方应助飞翔的企鹅采纳,获得10
5分钟前
creep2020完成签到,获得积分10
5分钟前
小二郎应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
少年完成签到,获得积分10
5分钟前
liuzhigang完成签到 ,获得积分10
5分钟前
6分钟前
6分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990603
求助须知:如何正确求助?哪些是违规求助? 3532220
关于积分的说明 11256532
捐赠科研通 3271057
什么是DOI,文献DOI怎么找? 1805229
邀请新用户注册赠送积分活动 882302
科研通“疑难数据库(出版商)”最低求助积分说明 809234