阴极
氟化物
材料科学
氟化锂
金属锂
金属
锂(药物)
无机化学
光学(聚焦)
化学
冶金
阳极
电极
物理
内分泌学
物理化学
光学
医学
作者
Lidong Sun,Yu Li,Wei Feng
标识
DOI:10.1002/smtd.202201152
摘要
Abstract Exploring prospective rechargeable batteries with high energy densities is urgently needed on a worldwide scale to address the needs of the large‐scale electric vehicle market. Conversion‐type metal fluorides (MFs) are attractive cathodes for next‐generation rechargeable batteries because of their high theoretical potential and capacities and provide new perspectives for developing novel battery systems that satisfy energy density requirements. However, some critical issues, such as high voltage hysteresis and poor cycling stability must be solved to further enhance MF cathode materials. In this review, the recent advances in mechanisms focused on FeF 3 cathodes under lithiation/delithiation processes are discussed in detail. Then, the classifications and advantages of various synthesis methods to prepare MF‐based materials are first minutely discussed. Moreover, the performance attenuation mechanisms of MFs and the effort in the development of mitigation strategies are comprehensively reviewed. Finally, prospects for the current obstacles and possible research directions, with the aim to provide some inspiration for the development of MF cathode‐based batteries are presented.
科研通智能强力驱动
Strongly Powered by AbleSci AI