Applicability of Convolutional Neural Network for Estimation of Turbulent Diffusion Distance from Source Point

卷积神经网络 计算机科学 人工智能 湍流 标量(数学) 推论 流入 计算机视觉 数学 物理 机械 几何学
作者
Takahiro Ishigami,Motoki Irikura,Takahiro Tsukahara
出处
期刊:Processes [MDPI AG]
卷期号:10 (12): 2545-2545
标识
DOI:10.3390/pr10122545
摘要

For locating the source of leaking gas in various engineering fields, several issues remain in the immediate estimation of the location of diffusion sources from limited observation data, because of the nonlinearity of turbulence. This study investigated the practical applicability of diffusion source-location prediction using a convolutional neural network (CNN) from leaking gas instantaneous distribution images captured by infrared cameras. We performed direct numerical simulation of a turbulent flow past a cylinder to provide training and test images, which are scalar concentration distribution fields integrated along the view direction, mimicking actual camera images. We discussed the effects of the direction in which the leaking gas flows into the camera’s view and the distance between the camera and the leaking gas on the accuracy of inference. A single learner created by all images provided an inference accuracy exceeding 85%, regardless of the inflow direction or the distance between the camera and the leaking gas within the trained range. This indicated that, with sufficient training images, a high-inference accuracy can be achieved, regardless of the direction of gas leakage or the distance between the camera and the leaking gas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
赵yy应助AAA王总采纳,获得10
1秒前
天蓝日月潭完成签到 ,获得积分10
1秒前
2秒前
2秒前
2秒前
rayc应助星月采纳,获得10
3秒前
半芹完成签到,获得积分10
4秒前
LiuZhe发布了新的文献求助10
4秒前
JamesPei应助旭旭采纳,获得10
4秒前
KD发布了新的文献求助10
4秒前
5秒前
研友_LkYoRZ发布了新的文献求助10
5秒前
axin123完成签到,获得积分10
5秒前
共享精神应助机智菀采纳,获得10
5秒前
如意发布了新的文献求助10
5秒前
张伊婷完成签到 ,获得积分10
6秒前
6秒前
笨鸟先飞完成签到 ,获得积分10
6秒前
科研通AI6应助无限铸海采纳,获得10
6秒前
lc339发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
7秒前
8秒前
8秒前
郭通完成签到,获得积分20
9秒前
青鸢发布了新的文献求助10
9秒前
琪琪七完成签到,获得积分10
9秒前
橘座完成签到,获得积分10
9秒前
现安完成签到,获得积分10
9秒前
LiuZhe完成签到,获得积分10
11秒前
淡然的依风发布了新的文献求助200
11秒前
大模型应助Muxintong采纳,获得30
11秒前
11秒前
齐婷婷发布了新的文献求助10
12秒前
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5405038
求助须知:如何正确求助?哪些是违规求助? 4523317
关于积分的说明 14093145
捐赠科研通 4437067
什么是DOI,文献DOI怎么找? 2435432
邀请新用户注册赠送积分活动 1427659
关于科研通互助平台的介绍 1406000