Physics-informed neural networks for data-driven simulation: Advantages, limitations, and opportunities

多样性(控制论) 偏微分方程 人工神经网络 推论 计算机科学 选择(遗传算法) 电流(流体) 机器学习 人工智能 统计物理学 物理 量子力学 热力学
作者
Félix Fernández de la Mata,Alfonso Gijón,Miguel Molina-Solana,Juan Gómez‐Romero
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier]
卷期号:610: 128415-128415 被引量:16
标识
DOI:10.1016/j.physa.2022.128415
摘要

The last decade has seen a rise in the number and variety of techniques available for data-driven simulation of physical phenomena. One of the most promising approaches is Physics-Informed Neural Networks (PINNs), which can combine both data, obtained from sensors or numerical solvers, and physics knowledge, expressed as partial differential equations. In this work, we investigated the suitability of PINNs to replace current available numerical methods for physics simulations. Although the PINN approach is general and independent of the complexity of the underlying physics equations, a selection of typical heat transfer and fluid dynamics problems was proposed and multiple PINNs were comprehensibly trained and tested to solve them. When PINNs were used as learned simulators, the outcome of our experiments was not entirely satisfactory as not enough accuracy was achieved even though optimal configurations and long training times were used. The main cause for this limitation was found to be the lack of adequate activation functions and specialized architectures, since they proved to have a notable impact on the final accuracy of each model. In turn, PINN architectures showed an accurate behavior when used for parameter inference of partial differential equations from data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
平凡发布了新的文献求助10
4秒前
充电宝应助nanxi88采纳,获得10
5秒前
6秒前
迷人寒梦发布了新的文献求助10
7秒前
汉堡包应助tang采纳,获得10
7秒前
cc发布了新的文献求助10
9秒前
Qiao发布了新的文献求助10
12秒前
羊羊羊完成签到,获得积分10
12秒前
14秒前
cc完成签到,获得积分20
15秒前
15秒前
经冰夏完成签到 ,获得积分10
15秒前
壮观的衫完成签到,获得积分10
17秒前
Dr郑迅发布了新的文献求助30
19秒前
所所应助一一采纳,获得10
22秒前
负责的梦竹完成签到,获得积分10
23秒前
Francis_完成签到,获得积分10
24秒前
大模型应助科研通管家采纳,获得10
24秒前
所所应助科研通管家采纳,获得30
24秒前
星辰大海应助科研通管家采纳,获得10
24秒前
99giddens应助科研通管家采纳,获得200
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
spinning完成签到,获得积分10
24秒前
时舒完成签到 ,获得积分10
26秒前
27秒前
哈哈哈完成签到,获得积分10
28秒前
吴糖完成签到,获得积分10
30秒前
Micheal完成签到,获得积分0
31秒前
32秒前
32秒前
科研兄发布了新的文献求助10
33秒前
也是难得取个名完成签到 ,获得积分10
35秒前
Ava应助深夜空想家采纳,获得10
35秒前
zzzzz发布了新的文献求助10
37秒前
39秒前
乔乔完成签到,获得积分10
40秒前
41秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1100
大理州人民医院2021上半年(卫生类)人员招聘试题及解析 1000
2023云南大理州事业单位招聘专业技术人员医疗岗162人笔试历年典型考题及考点剖析附带答案详解 1000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3115158
求助须知:如何正确求助?哪些是违规求助? 2765458
关于积分的说明 7682510
捐赠科研通 2420572
什么是DOI,文献DOI怎么找? 1285071
科研通“疑难数据库(出版商)”最低求助积分说明 619893
版权声明 599756