2022-RA-767-ESGO Machine learning to implement the accuracy of magnetic resonance imaging (MRI) in the detection of lymph node metastasis in patients with locally advance cervical cancer treated with neoadjuvant chemotherapy

宫颈癌 医学 根治性子宫切除术 磁共振成像 阶段(地层学) 放射治疗 放射科 淋巴结 转移 癌症 内科学 古生物学 生物
作者
Francesca Arezzo,Vera Loizzi,Gerardo Cazzato,Michele Mongelli,Nicola Di Lillo,Erica Silvestris,Claudio Lombardi,Gennaro Cormio
出处
期刊:Diagnostics [MDPI AG]
卷期号:: A73.1-A73
标识
DOI:10.1136/ijgc-2022-esgo.160
摘要

Introduction/Background

Concurrent cisplatin-based chemotherapy and radiotherapy plus brachytherapy is standard treatment for locally advanced cervical cancer (LACC). Platinum-based neoadjuvant chemotherapy (NACT) followed by radical hysterectomy is an alternative approach reserves for patients with stage IB2-IIB disease. Therefore the correct pre-treatment staging is essential to the proper management of this disease. Pelvic magnetic resonance imaging (MRI) is the gold standard examination but studies about MRI accuracy in the detection of lymph node metastasis in LACC patients show conflicting data. Machine learning (ML) is emerging as a promising tool for unraveling complex non-linear relationships between patient attributes that cannot be solved by traditional statistical methods. Here we investigated whether ML might improve the accuracy of MRI in the detection of lymph node metastasis in LACC patients.

Methodology

We analyzed retrospectively LACC patients who underwent NACT and radical hysterectomy from 2014 to 2020. Demographic, clinical and MRI characteristics before and after NACT were collected, as well as information about post-surgery histopathology. Random features elimination wrapper was used to determine an attribute core set. A ML algorithm,namely Extreme Gradient Boosting(XGBoost) was trained and validated with 10-fold cross-validation.The performances of the algorithm were assessed.

Results

Our analysis included n.92 patients. FIGO stage was IB2 in n.4/92(4.3%), IB3 in n.42/92(45%), IIA1 in n.1/92(1.1%), IIA2 in n.16/92(17.4%) and IIB in n.29/92(31.5%). Despite detected neither at pre-treatment and post-treatment MRI in any patients, lymph node metastasis occurred in n.16/92(17%)patients.The attribute core set used to train ML algorithms included grading, histotypes, age, parity, largest diameter of lesion at either pre and post-treatment MRI,presence/absence of fornix infiltration at pre-treatment MRI and FIGO stage(Figure1-PanelA). XGBoost showed a good performance(accuracy 89%, precision 83%, recall 78%, AUROC 0.79, Figure 2-PanelB).

Conclusion

We developed an accurate model to predict lymph node metastasis in LACC patients in NACT,based on a ML algorithm requiring few easy-to-collect attributes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热心的思烟完成签到,获得积分10
1秒前
1秒前
3秒前
肥而不腻的羚羊完成签到,获得积分0
3秒前
fwb发布了新的文献求助10
4秒前
小蘑菇应助arya采纳,获得10
5秒前
Eiu完成签到,获得积分20
5秒前
长乐完成签到,获得积分10
7秒前
7秒前
7秒前
nly应助zxz采纳,获得10
9秒前
9秒前
9秒前
9秒前
xx发布了新的文献求助10
10秒前
星星完成签到,获得积分10
11秒前
还在考虑完成签到,获得积分10
11秒前
12秒前
1179发布了新的文献求助10
12秒前
13秒前
14秒前
怡然白猫发布了新的文献求助10
14秒前
大模型应助娟娟采纳,获得10
14秒前
hammer完成签到,获得积分10
14秒前
14秒前
研玲发布了新的文献求助10
15秒前
15秒前
zxz完成签到,获得积分10
15秒前
HUAN完成签到,获得积分10
16秒前
hmlee123发布了新的文献求助10
16秒前
昏睡的铅笔完成签到,获得积分10
17秒前
18秒前
ZMT完成签到,获得积分10
19秒前
陶醉觅夏发布了新的文献求助10
19秒前
CC完成签到 ,获得积分10
20秒前
顺利白安完成签到,获得积分10
20秒前
Furstar完成签到,获得积分10
23秒前
23秒前
23秒前
青青青青发布了新的文献求助10
23秒前
高分求助中
中国国际图书贸易总公司40周年纪念文集: 史论集 2500
Sustainability in Tides Chemistry 2000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3112787
求助须知:如何正确求助?哪些是违规求助? 2763025
关于积分的说明 7673259
捐赠科研通 2418326
什么是DOI,文献DOI怎么找? 1283724
科研通“疑难数据库(出版商)”最低求助积分说明 619449
版权声明 599586