2022-RA-767-ESGO Machine learning to implement the accuracy of magnetic resonance imaging (MRI) in the detection of lymph node metastasis in patients with locally advance cervical cancer treated with neoadjuvant chemotherapy

宫颈癌 医学 根治性子宫切除术 磁共振成像 阶段(地层学) 放射治疗 放射科 淋巴结 转移 癌症 内科学 生物 古生物学
作者
Francesca Arezzo,Vera Loizzi,Gerardo Cazzato,Michele Mongelli,Nicola Di Lillo,Erica Silvestris,Claudio Lombardi,Gennaro Cormio
出处
期刊:Diagnostics [Multidisciplinary Digital Publishing Institute]
卷期号:: A73.1-A73
标识
DOI:10.1136/ijgc-2022-esgo.160
摘要

Introduction/Background

Concurrent cisplatin-based chemotherapy and radiotherapy plus brachytherapy is standard treatment for locally advanced cervical cancer (LACC). Platinum-based neoadjuvant chemotherapy (NACT) followed by radical hysterectomy is an alternative approach reserves for patients with stage IB2-IIB disease. Therefore the correct pre-treatment staging is essential to the proper management of this disease. Pelvic magnetic resonance imaging (MRI) is the gold standard examination but studies about MRI accuracy in the detection of lymph node metastasis in LACC patients show conflicting data. Machine learning (ML) is emerging as a promising tool for unraveling complex non-linear relationships between patient attributes that cannot be solved by traditional statistical methods. Here we investigated whether ML might improve the accuracy of MRI in the detection of lymph node metastasis in LACC patients.

Methodology

We analyzed retrospectively LACC patients who underwent NACT and radical hysterectomy from 2014 to 2020. Demographic, clinical and MRI characteristics before and after NACT were collected, as well as information about post-surgery histopathology. Random features elimination wrapper was used to determine an attribute core set. A ML algorithm,namely Extreme Gradient Boosting(XGBoost) was trained and validated with 10-fold cross-validation.The performances of the algorithm were assessed.

Results

Our analysis included n.92 patients. FIGO stage was IB2 in n.4/92(4.3%), IB3 in n.42/92(45%), IIA1 in n.1/92(1.1%), IIA2 in n.16/92(17.4%) and IIB in n.29/92(31.5%). Despite detected neither at pre-treatment and post-treatment MRI in any patients, lymph node metastasis occurred in n.16/92(17%)patients.The attribute core set used to train ML algorithms included grading, histotypes, age, parity, largest diameter of lesion at either pre and post-treatment MRI,presence/absence of fornix infiltration at pre-treatment MRI and FIGO stage(Figure1-PanelA). XGBoost showed a good performance(accuracy 89%, precision 83%, recall 78%, AUROC 0.79, Figure 2-PanelB).

Conclusion

We developed an accurate model to predict lymph node metastasis in LACC patients in NACT,based on a ML algorithm requiring few easy-to-collect attributes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qqqqq完成签到,获得积分10
刚刚
充电宝应助Passskd采纳,获得10
刚刚
1秒前
1秒前
3秒前
内向南风完成签到 ,获得积分10
5秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
顾矜应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
Maestro_S应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得30
7秒前
7秒前
高高亿先应助科研通管家采纳,获得10
7秒前
烟花应助科研通管家采纳,获得10
7秒前
7秒前
ding应助科研通管家采纳,获得10
7秒前
1sunpf完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
spf完成签到,获得积分10
8秒前
荒野风发布了新的文献求助10
8秒前
luxkex完成签到,获得积分10
8秒前
8秒前
奶黄包发布了新的文献求助10
8秒前
有求必_应完成签到,获得积分10
9秒前
10秒前
ShuY完成签到,获得积分10
10秒前
careyzhou发布了新的文献求助10
10秒前
Ran-HT完成签到,获得积分10
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038426
求助须知:如何正确求助?哪些是违规求助? 3576119
关于积分的说明 11374556
捐赠科研通 3305834
什么是DOI,文献DOI怎么找? 1819339
邀请新用户注册赠送积分活动 892678
科研通“疑难数据库(出版商)”最低求助积分说明 815029