重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

2022-RA-767-ESGO Machine learning to implement the accuracy of magnetic resonance imaging (MRI) in the detection of lymph node metastasis in patients with locally advance cervical cancer treated with neoadjuvant chemotherapy

宫颈癌 医学 根治性子宫切除术 磁共振成像 阶段(地层学) 放射治疗 放射科 淋巴结 转移 癌症 内科学 古生物学 生物
作者
Francesca Arezzo,Vera Loizzi,Gerardo Cazzato,Michele Mongelli,Nicola Di Lillo,Erica Silvestris,Claudio Lombardi,Gennaro Cormio
出处
期刊:Diagnostics [MDPI AG]
卷期号:: A73.1-A73
标识
DOI:10.1136/ijgc-2022-esgo.160
摘要

Introduction/Background

Concurrent cisplatin-based chemotherapy and radiotherapy plus brachytherapy is standard treatment for locally advanced cervical cancer (LACC). Platinum-based neoadjuvant chemotherapy (NACT) followed by radical hysterectomy is an alternative approach reserves for patients with stage IB2-IIB disease. Therefore the correct pre-treatment staging is essential to the proper management of this disease. Pelvic magnetic resonance imaging (MRI) is the gold standard examination but studies about MRI accuracy in the detection of lymph node metastasis in LACC patients show conflicting data. Machine learning (ML) is emerging as a promising tool for unraveling complex non-linear relationships between patient attributes that cannot be solved by traditional statistical methods. Here we investigated whether ML might improve the accuracy of MRI in the detection of lymph node metastasis in LACC patients.

Methodology

We analyzed retrospectively LACC patients who underwent NACT and radical hysterectomy from 2014 to 2020. Demographic, clinical and MRI characteristics before and after NACT were collected, as well as information about post-surgery histopathology. Random features elimination wrapper was used to determine an attribute core set. A ML algorithm,namely Extreme Gradient Boosting(XGBoost) was trained and validated with 10-fold cross-validation.The performances of the algorithm were assessed.

Results

Our analysis included n.92 patients. FIGO stage was IB2 in n.4/92(4.3%), IB3 in n.42/92(45%), IIA1 in n.1/92(1.1%), IIA2 in n.16/92(17.4%) and IIB in n.29/92(31.5%). Despite detected neither at pre-treatment and post-treatment MRI in any patients, lymph node metastasis occurred in n.16/92(17%)patients.The attribute core set used to train ML algorithms included grading, histotypes, age, parity, largest diameter of lesion at either pre and post-treatment MRI,presence/absence of fornix infiltration at pre-treatment MRI and FIGO stage(Figure1-PanelA). XGBoost showed a good performance(accuracy 89%, precision 83%, recall 78%, AUROC 0.79, Figure 2-PanelB).

Conclusion

We developed an accurate model to predict lymph node metastasis in LACC patients in NACT,based on a ML algorithm requiring few easy-to-collect attributes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研小李发布了新的文献求助10
1秒前
1秒前
1秒前
faye完成签到 ,获得积分20
1秒前
2秒前
bae关闭了bae文献求助
2秒前
hey应助tyche采纳,获得10
2秒前
多看文献完成签到,获得积分10
3秒前
JamesPei应助猪猪hero采纳,获得10
3秒前
3秒前
麞欎完成签到,获得积分10
4秒前
4秒前
坚定晓兰应助舒服的雁兰采纳,获得10
4秒前
小蘑菇应助舒服的雁兰采纳,获得10
4秒前
乐乐应助蒋蒋采纳,获得10
4秒前
科研通AI6应助要减肥采纳,获得10
4秒前
haha发布了新的文献求助10
4秒前
5秒前
Hou完成签到,获得积分10
5秒前
5秒前
kk0612发布了新的文献求助10
6秒前
苹果寻菱完成签到,获得积分10
6秒前
7秒前
大胆夜天发布了新的文献求助10
7秒前
vffg发布了新的文献求助10
7秒前
123noo发布了新的文献求助10
7秒前
7秒前
8秒前
zain发布了新的文献求助10
8秒前
二中所长完成签到,获得积分10
8秒前
8秒前
lvbowen完成签到,获得积分10
9秒前
小阿琳发布了新的文献求助10
9秒前
9秒前
大个应助lllllsy采纳,获得10
10秒前
10秒前
tleeny完成签到,获得积分10
10秒前
唐一发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467299
求助须知:如何正确求助?哪些是违规求助? 4571085
关于积分的说明 14328325
捐赠科研通 4497634
什么是DOI,文献DOI怎么找? 2464057
邀请新用户注册赠送积分活动 1452861
关于科研通互助平台的介绍 1427654