2022-RA-767-ESGO Machine learning to implement the accuracy of magnetic resonance imaging (MRI) in the detection of lymph node metastasis in patients with locally advance cervical cancer treated with neoadjuvant chemotherapy

宫颈癌 医学 根治性子宫切除术 磁共振成像 阶段(地层学) 放射治疗 放射科 淋巴结 转移 癌症 内科学 古生物学 生物
作者
Francesca Arezzo,Vera Loizzi,Gerardo Cazzato,Michele Mongelli,Nicola Di Lillo,Erica Silvestris,Claudio Lombardi,Gennaro Cormio
出处
期刊:Diagnostics [Multidisciplinary Digital Publishing Institute]
卷期号:: A73.1-A73
标识
DOI:10.1136/ijgc-2022-esgo.160
摘要

Introduction/Background

Concurrent cisplatin-based chemotherapy and radiotherapy plus brachytherapy is standard treatment for locally advanced cervical cancer (LACC). Platinum-based neoadjuvant chemotherapy (NACT) followed by radical hysterectomy is an alternative approach reserves for patients with stage IB2-IIB disease. Therefore the correct pre-treatment staging is essential to the proper management of this disease. Pelvic magnetic resonance imaging (MRI) is the gold standard examination but studies about MRI accuracy in the detection of lymph node metastasis in LACC patients show conflicting data. Machine learning (ML) is emerging as a promising tool for unraveling complex non-linear relationships between patient attributes that cannot be solved by traditional statistical methods. Here we investigated whether ML might improve the accuracy of MRI in the detection of lymph node metastasis in LACC patients.

Methodology

We analyzed retrospectively LACC patients who underwent NACT and radical hysterectomy from 2014 to 2020. Demographic, clinical and MRI characteristics before and after NACT were collected, as well as information about post-surgery histopathology. Random features elimination wrapper was used to determine an attribute core set. A ML algorithm,namely Extreme Gradient Boosting(XGBoost) was trained and validated with 10-fold cross-validation.The performances of the algorithm were assessed.

Results

Our analysis included n.92 patients. FIGO stage was IB2 in n.4/92(4.3%), IB3 in n.42/92(45%), IIA1 in n.1/92(1.1%), IIA2 in n.16/92(17.4%) and IIB in n.29/92(31.5%). Despite detected neither at pre-treatment and post-treatment MRI in any patients, lymph node metastasis occurred in n.16/92(17%)patients.The attribute core set used to train ML algorithms included grading, histotypes, age, parity, largest diameter of lesion at either pre and post-treatment MRI,presence/absence of fornix infiltration at pre-treatment MRI and FIGO stage(Figure1-PanelA). XGBoost showed a good performance(accuracy 89%, precision 83%, recall 78%, AUROC 0.79, Figure 2-PanelB).

Conclusion

We developed an accurate model to predict lymph node metastasis in LACC patients in NACT,based on a ML algorithm requiring few easy-to-collect attributes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宋笨笨完成签到 ,获得积分10
1秒前
1秒前
1x3发布了新的文献求助10
2秒前
Sam完成签到,获得积分10
5秒前
于雷是我完成签到,获得积分10
6秒前
yqz发布了新的文献求助30
7秒前
9秒前
香蕉觅云应助粉条采纳,获得10
11秒前
英姑应助Nicole采纳,获得10
12秒前
朴实子骞完成签到 ,获得积分10
13秒前
chenxin完成签到,获得积分10
14秒前
Iiiilr完成签到 ,获得积分10
14秒前
生动刺猬发布了新的文献求助10
14秒前
852应助小萝卜采纳,获得10
15秒前
夕阳与茶完成签到,获得积分10
15秒前
佳佳应助CyS采纳,获得10
15秒前
16秒前
乱武完成签到,获得积分10
16秒前
Aloha完成签到,获得积分10
17秒前
18秒前
11应助夕阳与茶采纳,获得10
19秒前
HJJHJH发布了新的文献求助50
20秒前
21秒前
eeeating完成签到,获得积分10
22秒前
田様应助notsoeasy采纳,获得10
23秒前
刘旋发布了新的文献求助10
23秒前
和谐绍辉完成签到,获得积分20
23秒前
科研通AI2S应助CyS采纳,获得10
23秒前
CC发布了新的文献求助10
23秒前
24秒前
张雷应助1x3采纳,获得20
24秒前
26秒前
帅气访天完成签到,获得积分10
26秒前
小萝卜发布了新的文献求助10
28秒前
粉条发布了新的文献求助10
28秒前
小鱼完成签到,获得积分10
28秒前
29秒前
跳跃的邪欢完成签到,获得积分10
30秒前
小宋完成签到,获得积分10
31秒前
Iiirds完成签到 ,获得积分10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976210
求助须知:如何正确求助?哪些是违规求助? 3520366
关于积分的说明 11203088
捐赠科研通 3256965
什么是DOI,文献DOI怎么找? 1798570
邀请新用户注册赠送积分活动 877738
科研通“疑难数据库(出版商)”最低求助积分说明 806516