2022-RA-767-ESGO Machine learning to implement the accuracy of magnetic resonance imaging (MRI) in the detection of lymph node metastasis in patients with locally advance cervical cancer treated with neoadjuvant chemotherapy

宫颈癌 医学 根治性子宫切除术 磁共振成像 阶段(地层学) 放射治疗 放射科 淋巴结 转移 癌症 内科学 生物 古生物学
作者
Francesca Arezzo,Vera Loizzi,Gerardo Cazzato,Michele Mongelli,Nicola Di Lillo,Erica Silvestris,Claudio Lombardi,Gennaro Cormio
出处
期刊:Diagnostics [MDPI AG]
卷期号:: A73.1-A73
标识
DOI:10.1136/ijgc-2022-esgo.160
摘要

Introduction/Background

Concurrent cisplatin-based chemotherapy and radiotherapy plus brachytherapy is standard treatment for locally advanced cervical cancer (LACC). Platinum-based neoadjuvant chemotherapy (NACT) followed by radical hysterectomy is an alternative approach reserves for patients with stage IB2-IIB disease. Therefore the correct pre-treatment staging is essential to the proper management of this disease. Pelvic magnetic resonance imaging (MRI) is the gold standard examination but studies about MRI accuracy in the detection of lymph node metastasis in LACC patients show conflicting data. Machine learning (ML) is emerging as a promising tool for unraveling complex non-linear relationships between patient attributes that cannot be solved by traditional statistical methods. Here we investigated whether ML might improve the accuracy of MRI in the detection of lymph node metastasis in LACC patients.

Methodology

We analyzed retrospectively LACC patients who underwent NACT and radical hysterectomy from 2014 to 2020. Demographic, clinical and MRI characteristics before and after NACT were collected, as well as information about post-surgery histopathology. Random features elimination wrapper was used to determine an attribute core set. A ML algorithm,namely Extreme Gradient Boosting(XGBoost) was trained and validated with 10-fold cross-validation.The performances of the algorithm were assessed.

Results

Our analysis included n.92 patients. FIGO stage was IB2 in n.4/92(4.3%), IB3 in n.42/92(45%), IIA1 in n.1/92(1.1%), IIA2 in n.16/92(17.4%) and IIB in n.29/92(31.5%). Despite detected neither at pre-treatment and post-treatment MRI in any patients, lymph node metastasis occurred in n.16/92(17%)patients.The attribute core set used to train ML algorithms included grading, histotypes, age, parity, largest diameter of lesion at either pre and post-treatment MRI,presence/absence of fornix infiltration at pre-treatment MRI and FIGO stage(Figure1-PanelA). XGBoost showed a good performance(accuracy 89%, precision 83%, recall 78%, AUROC 0.79, Figure 2-PanelB).

Conclusion

We developed an accurate model to predict lymph node metastasis in LACC patients in NACT,based on a ML algorithm requiring few easy-to-collect attributes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张zz发布了新的文献求助10
1秒前
1秒前
1秒前
好名字完成签到,获得积分10
2秒前
眼睛大的书易完成签到,获得积分10
2秒前
烦恼大海发布了新的文献求助10
2秒前
lmy完成签到,获得积分10
2秒前
岘屿完成签到 ,获得积分10
2秒前
3秒前
3秒前
3秒前
晴qq发布了新的文献求助10
4秒前
4秒前
墨月发布了新的文献求助10
5秒前
费1发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
7秒前
斯文败类应助xzh采纳,获得10
7秒前
8秒前
好名字发布了新的文献求助10
8秒前
墙雨轩完成签到 ,获得积分10
9秒前
研友_VZG7GZ应助QYPANG采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
能干巨人应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
轨迹应助科研通管家采纳,获得20
10秒前
斯文败类应助科研通管家采纳,获得200
10秒前
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
南瓜发布了新的文献求助10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
Eatanicecube完成签到,获得积分10
10秒前
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
上官若男应助科研通管家采纳,获得10
11秒前
wanci应助科研通管家采纳,获得10
11秒前
cjl应助科研通管家采纳,获得30
11秒前
Criminology34应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711679
求助须知:如何正确求助?哪些是违规求助? 5205113
关于积分的说明 15264986
捐赠科研通 4863917
什么是DOI,文献DOI怎么找? 2611005
邀请新用户注册赠送积分活动 1561363
关于科研通互助平台的介绍 1518685