Predicting Yarn Breaks in Textile Fabrics: A Machine Learning Approach

计算机科学 纱线 织布机 人工智能 机器学习 停工期 对数 尺寸 织物 生产(经济) 工业工程 数据挖掘 操作系统 历史 复合材料 经济 工程类 考古 宏观经济学 数学 材料科学 视觉艺术 数学分析 艺术
作者
João Azevedo,Rui Ribeiro,Luís Miguel Matos,Rui Sousa,João P. Silva,André Pilastri,Paulo Cortez
出处
期刊:Procedia Computer Science [Elsevier]
卷期号:207: 2301-2310 被引量:3
标识
DOI:10.1016/j.procs.2022.09.289
摘要

In this paper, we propose a Machine Learning (ML) approach to predict faults that may occur during the production of fabrics and that often cause production downtime delays. We worked with a textile company that produces fabrics under the Industry 4.0 concept. In particular, we deal with a client customization requisite that impacts on production planning and scheduling, where there is a crucial need of limiting machine stoppage. Thus, the prediction of machine stops enables the manufacturer to react to such situation. If a specific loom is expected to have more breaks, several measures can be taken: slower loom speed, special attention by the operator, change in the used yarn, stronger sizing recipe, etc. The goal is to model three regression tasks related with the number of weft breaks, warp breaks, and yarn bursts. To reduce the modeling effort, we adopt several Automated Machine Learning (AutoML) tools (H2O, AutoGluon, AutoKeras), allowing us to compare distinct ML approaches: using a single (one model per task) and Multi-Target Regression (MTR); and using the direct output target or a logarithm transformed one. Several experiments were held by considering Internet of Things (IoT) historical data from a Portuguese textile company. Overall, the best results for the three tasks were obtained by the single-target approach with the H2O tool using logarithm transformed data, achieving an R2 of 0.73 for weft breaks. Furthermore, a Sensitivity Analysis eXplainable Artificial Intelligence (SA XAI) approach was executed over the selected H2OAutoML model, showing its potential value to extract useful explanatory knowledge for the analyzed textile domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jiaolulu发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
真的不想干活了完成签到,获得积分10
3秒前
美丽的依琴完成签到,获得积分10
4秒前
Xin完成签到,获得积分10
10秒前
Aurora.H完成签到,获得积分10
13秒前
13秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
打打应助科研通管家采纳,获得10
14秒前
Jasper应助科研通管家采纳,获得10
14秒前
Ava应助科研通管家采纳,获得10
14秒前
顾矜应助科研通管家采纳,获得10
14秒前
上官若男应助科研通管家采纳,获得10
14秒前
duckspy发布了新的文献求助10
16秒前
16秒前
16秒前
xiaowan完成签到,获得积分10
17秒前
Terry完成签到,获得积分10
18秒前
张张张哈哈哈完成签到,获得积分10
18秒前
Research完成签到 ,获得积分10
18秒前
称心采枫完成签到 ,获得积分0
19秒前
19秒前
新新新新新发顶刊完成签到 ,获得积分10
20秒前
L3完成签到,获得积分10
21秒前
我是科研小能手完成签到,获得积分10
21秒前
风中的小丸子完成签到,获得积分10
22秒前
22秒前
时尚俊驰发布了新的文献求助10
23秒前
23秒前
23秒前
Grin完成签到,获得积分10
24秒前
周周完成签到,获得积分20
24秒前
25秒前
liufan完成签到 ,获得积分10
27秒前
guitarist完成签到 ,获得积分10
27秒前
饮汽水完成签到,获得积分10
27秒前
27秒前
yoyo20012623完成签到,获得积分10
28秒前
伦语发布了新的文献求助10
28秒前
韵苑完成签到,获得积分10
30秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038201
求助须知:如何正确求助?哪些是违规求助? 3575940
关于积分的说明 11373987
捐赠科研通 3305747
什么是DOI,文献DOI怎么找? 1819274
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022