Predicting Yarn Breaks in Textile Fabrics: A Machine Learning Approach

计算机科学 纱线 织布机 人工智能 机器学习 停工期 对数 尺寸 织物 生产(经济) 工业工程 数据挖掘 操作系统 历史 复合材料 经济 工程类 考古 宏观经济学 数学 材料科学 视觉艺术 数学分析 艺术
作者
João Azevedo,Rui Ribeiro,Luís Miguel Matos,Rui Sousa,João P. Silva,André Pilastri,Paulo Cortez
出处
期刊:Procedia Computer Science [Elsevier]
卷期号:207: 2301-2310 被引量:3
标识
DOI:10.1016/j.procs.2022.09.289
摘要

In this paper, we propose a Machine Learning (ML) approach to predict faults that may occur during the production of fabrics and that often cause production downtime delays. We worked with a textile company that produces fabrics under the Industry 4.0 concept. In particular, we deal with a client customization requisite that impacts on production planning and scheduling, where there is a crucial need of limiting machine stoppage. Thus, the prediction of machine stops enables the manufacturer to react to such situation. If a specific loom is expected to have more breaks, several measures can be taken: slower loom speed, special attention by the operator, change in the used yarn, stronger sizing recipe, etc. The goal is to model three regression tasks related with the number of weft breaks, warp breaks, and yarn bursts. To reduce the modeling effort, we adopt several Automated Machine Learning (AutoML) tools (H2O, AutoGluon, AutoKeras), allowing us to compare distinct ML approaches: using a single (one model per task) and Multi-Target Regression (MTR); and using the direct output target or a logarithm transformed one. Several experiments were held by considering Internet of Things (IoT) historical data from a Portuguese textile company. Overall, the best results for the three tasks were obtained by the single-target approach with the H2O tool using logarithm transformed data, achieving an R2 of 0.73 for weft breaks. Furthermore, a Sensitivity Analysis eXplainable Artificial Intelligence (SA XAI) approach was executed over the selected H2OAutoML model, showing its potential value to extract useful explanatory knowledge for the analyzed textile domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
avalanche应助ceng采纳,获得30
刚刚
Jasper应助adverse采纳,获得10
刚刚
刚刚
我是老大应助Passer采纳,获得10
刚刚
Chao发布了新的文献求助10
1秒前
1秒前
三哥完成签到,获得积分10
1秒前
科研通AI6应助干净冬莲采纳,获得10
1秒前
1秒前
2秒前
2秒前
3秒前
4秒前
小马甲应助科研老炮采纳,获得10
4秒前
Owen应助周周周周周采纳,获得10
4秒前
顾矜应助什么都不懂采纳,获得10
4秒前
研友_VZG7GZ应助Chao采纳,获得10
6秒前
7秒前
UMA发布了新的文献求助10
8秒前
8秒前
11完成签到,获得积分10
8秒前
9秒前
9秒前
bjyx发布了新的文献求助10
9秒前
Yang发布了新的文献求助10
9秒前
丘比特应助哈哈哈哈哈哈采纳,获得10
10秒前
寻找论文完成签到,获得积分10
10秒前
0128lun发布了新的文献求助10
11秒前
11秒前
科研川完成签到 ,获得积分10
11秒前
12秒前
镓氧锌钇铀应助li采纳,获得20
12秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
时尚捕发布了新的文献求助10
14秒前
14秒前
15秒前
orixero应助arrebol采纳,获得10
15秒前
斯文败类应助Yang采纳,获得10
16秒前
所所应助幽默的沁采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468557
求助须知:如何正确求助?哪些是违规求助? 4571954
关于积分的说明 14332897
捐赠科研通 4498650
什么是DOI,文献DOI怎么找? 2464664
邀请新用户注册赠送积分活动 1453302
关于科研通互助平台的介绍 1427914