Predicting Yarn Breaks in Textile Fabrics: A Machine Learning Approach

计算机科学 纱线 织布机 人工智能 机器学习 停工期 对数 尺寸 织物 生产(经济) 工业工程 数据挖掘 视觉艺术 材料科学 考古 经济 复合材料 艺术 宏观经济学 数学分析 工程类 操作系统 历史 数学
作者
João Azevedo,Rui Ribeiro,Luís Miguel Matos,Rui Sousa,João P. Silva,André Pilastri,Paulo Cortez
出处
期刊:Procedia Computer Science [Elsevier]
卷期号:207: 2301-2310 被引量:3
标识
DOI:10.1016/j.procs.2022.09.289
摘要

In this paper, we propose a Machine Learning (ML) approach to predict faults that may occur during the production of fabrics and that often cause production downtime delays. We worked with a textile company that produces fabrics under the Industry 4.0 concept. In particular, we deal with a client customization requisite that impacts on production planning and scheduling, where there is a crucial need of limiting machine stoppage. Thus, the prediction of machine stops enables the manufacturer to react to such situation. If a specific loom is expected to have more breaks, several measures can be taken: slower loom speed, special attention by the operator, change in the used yarn, stronger sizing recipe, etc. The goal is to model three regression tasks related with the number of weft breaks, warp breaks, and yarn bursts. To reduce the modeling effort, we adopt several Automated Machine Learning (AutoML) tools (H2O, AutoGluon, AutoKeras), allowing us to compare distinct ML approaches: using a single (one model per task) and Multi-Target Regression (MTR); and using the direct output target or a logarithm transformed one. Several experiments were held by considering Internet of Things (IoT) historical data from a Portuguese textile company. Overall, the best results for the three tasks were obtained by the single-target approach with the H2O tool using logarithm transformed data, achieving an R2 of 0.73 for weft breaks. Furthermore, a Sensitivity Analysis eXplainable Artificial Intelligence (SA XAI) approach was executed over the selected H2OAutoML model, showing its potential value to extract useful explanatory knowledge for the analyzed textile domain.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风口上的飞猪完成签到,获得积分10
1秒前
orixero应助邵振启采纳,获得10
1秒前
大根猫完成签到,获得积分10
1秒前
蜗牛完成签到,获得积分10
1秒前
IMkily完成签到,获得积分10
2秒前
超级的白枫完成签到,获得积分20
2秒前
iNk应助woshiwuziq采纳,获得10
2秒前
小马甲应助daidaidene采纳,获得10
2秒前
2秒前
科目三应助愤怒的含雁采纳,获得10
3秒前
小吴发布了新的文献求助10
3秒前
无情的尔烟完成签到 ,获得积分10
3秒前
doctorshg完成签到,获得积分10
3秒前
fgh完成签到 ,获得积分10
4秒前
yang完成签到,获得积分20
4秒前
canghong完成签到,获得积分10
4秒前
zzbyxh发布了新的文献求助10
4秒前
赏金猎人John_Wang完成签到,获得积分10
4秒前
静水流深完成签到,获得积分10
5秒前
6秒前
orixero应助田攀采纳,获得10
6秒前
6秒前
小费发布了新的文献求助30
6秒前
Cruffin完成签到 ,获得积分10
7秒前
xiw发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
充电宝应助yongp采纳,获得10
8秒前
熬夜波比应助thi采纳,获得10
8秒前
GOqqq发布了新的文献求助100
9秒前
9秒前
lsl599发布了新的文献求助10
9秒前
9秒前
9秒前
傅三毒完成签到 ,获得积分10
10秒前
zzz完成签到,获得积分10
10秒前
10秒前
459954发布了新的文献求助10
10秒前
10秒前
独特烙发布了新的文献求助10
11秒前
酷波er应助,,采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665352
求助须知:如何正确求助?哪些是违规求助? 4876309
关于积分的说明 15113352
捐赠科研通 4824419
什么是DOI,文献DOI怎么找? 2582766
邀请新用户注册赠送积分活动 1536717
关于科研通互助平台的介绍 1495328