Predicting Yarn Breaks in Textile Fabrics: A Machine Learning Approach

计算机科学 纱线 织布机 人工智能 机器学习 停工期 对数 尺寸 织物 生产(经济) 工业工程 数据挖掘 视觉艺术 材料科学 考古 经济 复合材料 艺术 宏观经济学 数学分析 工程类 操作系统 历史 数学
作者
João Azevedo,Rui Ribeiro,Luís Miguel Matos,Rui Sousa,João P. Silva,André Pilastri,Paulo Cortez
出处
期刊:Procedia Computer Science [Elsevier]
卷期号:207: 2301-2310 被引量:3
标识
DOI:10.1016/j.procs.2022.09.289
摘要

In this paper, we propose a Machine Learning (ML) approach to predict faults that may occur during the production of fabrics and that often cause production downtime delays. We worked with a textile company that produces fabrics under the Industry 4.0 concept. In particular, we deal with a client customization requisite that impacts on production planning and scheduling, where there is a crucial need of limiting machine stoppage. Thus, the prediction of machine stops enables the manufacturer to react to such situation. If a specific loom is expected to have more breaks, several measures can be taken: slower loom speed, special attention by the operator, change in the used yarn, stronger sizing recipe, etc. The goal is to model three regression tasks related with the number of weft breaks, warp breaks, and yarn bursts. To reduce the modeling effort, we adopt several Automated Machine Learning (AutoML) tools (H2O, AutoGluon, AutoKeras), allowing us to compare distinct ML approaches: using a single (one model per task) and Multi-Target Regression (MTR); and using the direct output target or a logarithm transformed one. Several experiments were held by considering Internet of Things (IoT) historical data from a Portuguese textile company. Overall, the best results for the three tasks were obtained by the single-target approach with the H2O tool using logarithm transformed data, achieving an R2 of 0.73 for weft breaks. Furthermore, a Sensitivity Analysis eXplainable Artificial Intelligence (SA XAI) approach was executed over the selected H2OAutoML model, showing its potential value to extract useful explanatory knowledge for the analyzed textile domain.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
传奇3应助年年年年采纳,获得10
2秒前
小武完成签到,获得积分10
3秒前
3秒前
LX完成签到,获得积分10
3秒前
Mangooo完成签到,获得积分10
3秒前
猫猫无敌完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
聪明帅哥发布了新的文献求助10
4秒前
skycool发布了新的文献求助10
4秒前
4秒前
回复对方完成签到,获得积分10
5秒前
5秒前
理li发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助30
5秒前
6秒前
6秒前
果称完成签到,获得积分10
6秒前
ZS驳回了Akim应助
7秒前
猫猫无敌发布了新的文献求助10
7秒前
8秒前
朴素八宝粥完成签到,获得积分10
8秒前
9秒前
完美世界应助余泽楷采纳,获得10
9秒前
苦行僧发布了新的文献求助30
10秒前
甄昕发布了新的文献求助10
10秒前
10秒前
852应助skycool采纳,获得10
10秒前
11秒前
笨笨凡松完成签到,获得积分10
11秒前
滴答完成签到 ,获得积分10
11秒前
负责雨安发布了新的文献求助10
11秒前
12秒前
路过蜻蜓完成签到,获得积分10
12秒前
12秒前
年年年年发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
Xiu发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5717982
求助须知:如何正确求助?哪些是违规求助? 5249617
关于积分的说明 15284035
捐赠科研通 4868135
什么是DOI,文献DOI怎么找? 2614009
邀请新用户注册赠送积分活动 1563957
关于科研通互助平台的介绍 1521400