Predicting Yarn Breaks in Textile Fabrics: A Machine Learning Approach

计算机科学 纱线 织布机 人工智能 机器学习 停工期 对数 尺寸 织物 生产(经济) 工业工程 数据挖掘 操作系统 历史 复合材料 经济 工程类 考古 宏观经济学 数学 材料科学 视觉艺术 数学分析 艺术
作者
João Azevedo,Rui Ribeiro,Luís Miguel Matos,Rui Sousa,João P. Silva,André Pilastri,Paulo Cortez
出处
期刊:Procedia Computer Science [Elsevier]
卷期号:207: 2301-2310 被引量:3
标识
DOI:10.1016/j.procs.2022.09.289
摘要

In this paper, we propose a Machine Learning (ML) approach to predict faults that may occur during the production of fabrics and that often cause production downtime delays. We worked with a textile company that produces fabrics under the Industry 4.0 concept. In particular, we deal with a client customization requisite that impacts on production planning and scheduling, where there is a crucial need of limiting machine stoppage. Thus, the prediction of machine stops enables the manufacturer to react to such situation. If a specific loom is expected to have more breaks, several measures can be taken: slower loom speed, special attention by the operator, change in the used yarn, stronger sizing recipe, etc. The goal is to model three regression tasks related with the number of weft breaks, warp breaks, and yarn bursts. To reduce the modeling effort, we adopt several Automated Machine Learning (AutoML) tools (H2O, AutoGluon, AutoKeras), allowing us to compare distinct ML approaches: using a single (one model per task) and Multi-Target Regression (MTR); and using the direct output target or a logarithm transformed one. Several experiments were held by considering Internet of Things (IoT) historical data from a Portuguese textile company. Overall, the best results for the three tasks were obtained by the single-target approach with the H2O tool using logarithm transformed data, achieving an R2 of 0.73 for weft breaks. Furthermore, a Sensitivity Analysis eXplainable Artificial Intelligence (SA XAI) approach was executed over the selected H2OAutoML model, showing its potential value to extract useful explanatory knowledge for the analyzed textile domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11发布了新的文献求助10
1秒前
英俊的铭应助外向芹菜采纳,获得10
2秒前
wanci应助姚景涛采纳,获得10
3秒前
超级炎彬完成签到,获得积分10
4秒前
5秒前
5秒前
wangchaofk发布了新的文献求助20
6秒前
新新完成签到,获得积分10
7秒前
搜集达人应助小超超采纳,获得10
7秒前
付2完成签到,获得积分20
8秒前
55完成签到,获得积分20
8秒前
共享精神应助wangyup采纳,获得10
8秒前
小雨发布了新的文献求助10
9秒前
栉风沐雨完成签到,获得积分10
9秒前
10秒前
魔幻凝云发布了新的文献求助40
11秒前
posh完成签到 ,获得积分10
12秒前
12秒前
12秒前
14秒前
魔幻慕梅完成签到,获得积分10
14秒前
科研通AI2S应助结实的半双采纳,获得10
15秒前
15秒前
ionicliquids发布了新的文献求助10
15秒前
烂漫薯片完成签到,获得积分10
15秒前
SciGPT应助Passerby采纳,获得10
17秒前
上上谦完成签到,获得积分10
17秒前
17秒前
一裤子灰完成签到,获得积分10
18秒前
魔幻芒果发布了新的文献求助10
18秒前
18秒前
忧郁紫翠完成签到,获得积分20
19秒前
20秒前
芒果味猕猴桃完成签到,获得积分10
20秒前
柳叶小弯刀完成签到,获得积分10
21秒前
21秒前
wangchaofk完成签到,获得积分10
21秒前
圆圆发布了新的文献求助10
23秒前
星辰大海应助科研通管家采纳,获得10
24秒前
田様应助科研通管家采纳,获得10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970048
求助须知:如何正确求助?哪些是违规求助? 3514739
关于积分的说明 11175783
捐赠科研通 3250115
什么是DOI,文献DOI怎么找? 1795198
邀请新用户注册赠送积分活动 875630
科研通“疑难数据库(出版商)”最低求助积分说明 804951