Automated UAV path-planning for high-quality photogrammetric 3D bridge reconstruction

摄影测量学 桥(图论) 观点 计算机科学 计算机视觉 平面图(考古学) 噪音(视频) 人工智能 运动规划 实时计算 工程类 图像(数学) 机器人 医学 艺术 考古 内科学 视觉艺术 历史
作者
Feng Wang,Yang Zou,Enrique del Rey Castillo,Youliang Ding,Xu Zhao,Hanwei Zhao,James B.P. Lim
出处
期刊:Structure and Infrastructure Engineering [Informa]
卷期号:: 1-20 被引量:11
标识
DOI:10.1080/15732479.2022.2152840
摘要

The bridge models reconstructed from unmanned aerial vehicle (UAV) images via photogrammetry are often reported to have quality issues (e.g., high noise, insufficient resolution and precision loss) and thus restrict their application in bridge inspection. To address this problem, this paper proposes a novel Building Information Model (BIM)-based 3D path planning method for improving the quality of photogrammetric bridge models by optimising the UAV flight plan. This method firstly uses a simple BIM model as input and considers inspection and photogrammetry requirements to generate effective UAV viewpoints. Then it adjusts inaccessible UAV viewpoints that are in occupied space or cannot meet the flight safety rules. Finally, a feasible flight trajectory is generated through all valid viewpoints. To evaluate the performance of the proposed method, two prototypes were developed to automate the path planning and on-site image acquisition, respectively, and were tested on a real girder bridge. The results showed that, compared with the common UAV flight plan used in current practice, the proposed method could: (1) generate a more precise bridge model with fewer noise points and higher visual quality to support damage detection; and (2) significantly improve the efficiency of photogrammetric 3D bridge reconstruction with reduced human interventions in image collection and processing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
单身的溪流完成签到 ,获得积分10
刚刚
大李包发布了新的文献求助10
刚刚
苗松完成签到,获得积分10
1秒前
FashionBoy应助流北爷采纳,获得10
1秒前
乐乐应助奋斗的小林采纳,获得10
1秒前
sankumao完成签到,获得积分10
1秒前
京阿尼发布了新的文献求助10
1秒前
xia发布了新的文献求助10
2秒前
SCI发布了新的文献求助10
3秒前
3秒前
zhui发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
马静雨完成签到,获得积分20
4秒前
5秒前
5秒前
快乐小白菜应助shenzhou9采纳,获得10
5秒前
无花果应助aertom采纳,获得10
5秒前
小田发布了新的文献求助10
5秒前
sankumao发布了新的文献求助30
5秒前
奋斗的盼柳完成签到 ,获得积分10
6秒前
7秒前
Jasper应助handsomecat采纳,获得10
7秒前
7秒前
李雪完成签到,获得积分10
8秒前
8秒前
sv发布了新的文献求助10
10秒前
小田完成签到,获得积分10
10秒前
茶茶完成签到,获得积分20
10秒前
苏兴龙完成签到,获得积分10
10秒前
坚强的亦云-333完成签到,获得积分10
10秒前
Ava应助dan1029采纳,获得10
11秒前
11秒前
11秒前
奶糖最可爱完成签到,获得积分10
12秒前
12秒前
mojomars发布了新的文献求助10
13秒前
幽壑之潜蛟应助茶茶采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794