Estimation of vegetation traits with kernel NDVI

归一化差异植被指数 光合有效辐射 叶面积指数 增强植被指数 天蓬 环境科学 遥感 植被(病理学) 数学 地理 植被指数 生态学 光合作用 植物 病理 考古 生物 医学
作者
Qiang Wang,Álvaro Moreno‐Martínez,Jordi Muñoz-Marí,Manuel Campos‐Taberner,Gustau Camps‐Valls
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:195: 408-417 被引量:57
标识
DOI:10.1016/j.isprsjprs.2022.12.019
摘要

Vegetation indices computed from spectral signatures are vastly used for monitoring the terrestrial biosphere. Indices are convenient proxies for canopy structure, and leaf pigment content, and consequently to estimate the photosynthetic activity of vegetation. Owing to its simplicity, the celebrated Normalized Difference Vegetation Index (NDVI) has been used as a proxy for greenness and canopy structure. Unfortunately, NDVI can only capture linear relationships of the near infrared (NIR) - red difference with the parameter of interest. To account for higher-order relations between the spectral channels, kernel NDVI (kNDVI) was proposed in (Camps-Valls et al., 2021). In this work, we give useful prescriptions for its proper use and show its good performance in a wider set of applications. We discuss the good characteristics of the index like boundedness, low error propagation. Furthermore, we give empirical evidence of performance in estimating in-situ vegetation parameters (leaf area index (LAI), gross primary productivity (GPP), leaf, and canopy chlorophyll content, green and total LAI and fraction of absorbed photosynthetically active radiation (fAPAR)) as well as the estimation of latent heat at flux tower level. We confirm the generally good performance of the index (correlation coefficient of kNDVI and canopy chlorophyll content is 0.919 and 0.933 for maize over two sites, as well as the correlation coefficient between kNDVI and carotenoid, is 0.816, 0.520 and 0.579 for three forest sites) and highlight its convenience in monitoring terrestrial ecosystems. To foster wider adoption of the new family of the index, we provide source code in 6 programming languages as well as efficient implementations in the Google Earth Engine (GEE) platform at https://github.com/IPL-UV/kNDVI.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助jolt采纳,获得30
刚刚
刀枪鸣发布了新的文献求助10
1秒前
1秒前
逍遥发布了新的文献求助60
1秒前
田様应助Guan采纳,获得10
2秒前
今后应助第九个黑夜采纳,获得10
2秒前
量子星尘发布了新的文献求助10
4秒前
轨迹应助旺哥采纳,获得50
4秒前
WFLLL应助李剑鸿采纳,获得30
5秒前
5秒前
6秒前
爆米花应助guohuameike采纳,获得10
6秒前
可可完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
8秒前
jessiefuli完成签到,获得积分10
9秒前
刘一手完成签到,获得积分10
9秒前
六六完成签到 ,获得积分10
9秒前
打打应助tiasn采纳,获得10
10秒前
10秒前
Mianiu应助xxx11采纳,获得10
10秒前
李剑鸿完成签到,获得积分10
10秒前
10秒前
研途顺利发布了新的文献求助10
11秒前
Aorsafe完成签到,获得积分10
11秒前
wwgn发布了新的文献求助10
11秒前
CipherSage应助猪猪hero采纳,获得30
12秒前
独特四娘发布了新的文献求助10
12秒前
KQ2077完成签到 ,获得积分10
13秒前
刘一手发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
15秒前
抹茶不迷糊完成签到,获得积分10
15秒前
Ji12138发布了新的文献求助10
15秒前
清澈水眸应助binol采纳,获得10
16秒前
VAMPIRE发布了新的文献求助10
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694252
求助须知:如何正确求助?哪些是违规求助? 5096658
关于积分的说明 15213516
捐赠科研通 4850904
什么是DOI,文献DOI怎么找? 2602050
邀请新用户注册赠送积分活动 1553901
关于科研通互助平台的介绍 1511836