Estimation of vegetation traits with kernel NDVI

归一化差异植被指数 光合有效辐射 叶面积指数 增强植被指数 天蓬 环境科学 遥感 植被(病理学) 数学 地理 植被指数 生态学 光合作用 植物 病理 考古 生物 医学
作者
Qiang Wang,Álvaro Moreno‐Martínez,Jordi Muñoz-Marí,Manuel Campos‐Taberner,Gustau Camps‐Valls
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:195: 408-417 被引量:57
标识
DOI:10.1016/j.isprsjprs.2022.12.019
摘要

Vegetation indices computed from spectral signatures are vastly used for monitoring the terrestrial biosphere. Indices are convenient proxies for canopy structure, and leaf pigment content, and consequently to estimate the photosynthetic activity of vegetation. Owing to its simplicity, the celebrated Normalized Difference Vegetation Index (NDVI) has been used as a proxy for greenness and canopy structure. Unfortunately, NDVI can only capture linear relationships of the near infrared (NIR) - red difference with the parameter of interest. To account for higher-order relations between the spectral channels, kernel NDVI (kNDVI) was proposed in (Camps-Valls et al., 2021). In this work, we give useful prescriptions for its proper use and show its good performance in a wider set of applications. We discuss the good characteristics of the index like boundedness, low error propagation. Furthermore, we give empirical evidence of performance in estimating in-situ vegetation parameters (leaf area index (LAI), gross primary productivity (GPP), leaf, and canopy chlorophyll content, green and total LAI and fraction of absorbed photosynthetically active radiation (fAPAR)) as well as the estimation of latent heat at flux tower level. We confirm the generally good performance of the index (correlation coefficient of kNDVI and canopy chlorophyll content is 0.919 and 0.933 for maize over two sites, as well as the correlation coefficient between kNDVI and carotenoid, is 0.816, 0.520 and 0.579 for three forest sites) and highlight its convenience in monitoring terrestrial ecosystems. To foster wider adoption of the new family of the index, we provide source code in 6 programming languages as well as efficient implementations in the Google Earth Engine (GEE) platform at https://github.com/IPL-UV/kNDVI.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
jian94完成签到,获得积分10
2秒前
咩咩发布了新的文献求助10
3秒前
Tin完成签到,获得积分10
4秒前
单小芫完成签到 ,获得积分10
4秒前
逍遥子完成签到,获得积分10
5秒前
GHL完成签到,获得积分10
6秒前
魁梧的海秋完成签到,获得积分10
7秒前
JamesPei应助spinon采纳,获得10
7秒前
深情的楷瑞完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
9秒前
南攻完成签到,获得积分10
11秒前
Wsyyy完成签到 ,获得积分10
11秒前
万能图书馆应助蔷薇采纳,获得20
11秒前
锂离子完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
忐忑的草丛完成签到,获得积分10
14秒前
鱼贝贝完成签到,获得积分10
15秒前
15秒前
sss完成签到,获得积分10
15秒前
尤瑟夫完成签到 ,获得积分10
15秒前
16秒前
赖氨酸完成签到,获得积分10
17秒前
18秒前
星辰发布了新的文献求助10
21秒前
gougou发布了新的文献求助10
21秒前
23秒前
23秒前
科研韭菜完成签到 ,获得积分10
25秒前
桥豆麻袋完成签到,获得积分10
25秒前
桃子完成签到 ,获得积分10
25秒前
spinon发布了新的文献求助10
26秒前
枫糖叶落完成签到,获得积分10
27秒前
量子星尘发布了新的文献求助10
28秒前
迷路凌柏完成签到 ,获得积分10
29秒前
月桂氮卓酮完成签到,获得积分10
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715621
求助须知:如何正确求助?哪些是违规求助? 5235764
关于积分的说明 15274658
捐赠科研通 4866353
什么是DOI,文献DOI怎么找? 2612926
邀请新用户注册赠送积分活动 1563081
关于科研通互助平台的介绍 1520565