Language and culture internalization for human-like autotelic AI

认知科学 认知 透视图(图形) 计算机科学 心理学 人工智能 神经科学
作者
Cédric Colas,Tristan Karch,Clément Moulin-Frier,Pierre‐Yves Oudeyer
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:4 (12): 1068-1076 被引量:16
标识
DOI:10.1038/s42256-022-00591-4
摘要

Building autonomous agents able to grow open-ended repertoires of skills across their lives is a fundamental goal of artificial intelligence (AI). A promising developmental approach recommends the design of intrinsically motivated agents that learn new skills by generating and pursuing their own goals—autotelic agents. But despite recent progress, existing algorithms still show serious limitations in terms of goal diversity, exploration, generalization or skill composition. This Perspective calls for the immersion of autotelic agents into rich socio-cultural worlds, an immensely important attribute of our environment that shapes human cognition but is mostly omitted in modern AI. Inspired by the seminal work of Vygotsky, we propose Vygotskian autotelic agents—agents able to internalize their interactions with others and turn them into cognitive tools. We focus on language and show how its structure and informational content may support the development of new cognitive functions in artificial agents as it does in humans. We justify the approach by uncovering several examples of new artificial cognitive functions emerging from interactions between language and embodiment in recent works at the intersection of deep reinforcement learning and natural language processing. Looking forward, we highlight future opportunities and challenges for Vygotskian autotelic AI research, including the use of language models as cultural models supporting artificial cognitive development. A goal of AI is to develop autonomous artificial agents with a wide set of skills. The authors propose the immersion of intrinsically motivated agents within rich socio-cultural worlds, focusing on language as a way for artificial agents to develop new cognitive functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
儒雅的斑马完成签到,获得积分10
3秒前
孤独元容发布了新的文献求助10
3秒前
慕青应助丰富傥采纳,获得10
5秒前
6秒前
华仔应助JueruiWang1258采纳,获得10
7秒前
7秒前
8秒前
科研小白发布了新的文献求助10
9秒前
Ava应助糖包采纳,获得10
9秒前
yifan625完成签到 ,获得积分10
9秒前
11秒前
坟里唱情歌完成签到 ,获得积分10
12秒前
勤奋的热狗完成签到 ,获得积分10
12秒前
13秒前
大蒜味酸奶钊完成签到 ,获得积分10
13秒前
科研通AI2S应助好久不见采纳,获得10
13秒前
syk发布了新的文献求助30
16秒前
LIKO完成签到,获得积分10
17秒前
17秒前
chengmin发布了新的文献求助10
18秒前
丰富傥发布了新的文献求助10
18秒前
19秒前
21秒前
共享精神应助科研小白采纳,获得10
21秒前
21秒前
23秒前
luoshiwen完成签到,获得积分20
24秒前
无花果应助chengmin采纳,获得10
25秒前
30秒前
31秒前
32秒前
33秒前
小月亮完成签到,获得积分10
34秒前
yc发布了新的文献求助10
36秒前
waily发布了新的文献求助10
36秒前
共享精神应助mimimi采纳,获得10
37秒前
38秒前
吴可之发布了新的文献求助30
38秒前
小錢完成签到 ,获得积分10
38秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 930
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
effects of intravenous lidocaine on postoperative pain and gastrointestinal function recovery following gastrointestinal surgery: a meta-analysis 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3384092
求助须知:如何正确求助?哪些是违规求助? 2998196
关于积分的说明 8777740
捐赠科研通 2683796
什么是DOI,文献DOI怎么找? 1469862
科研通“疑难数据库(出版商)”最低求助积分说明 679572
邀请新用户注册赠送积分活动 671868