Uncertainty-Aware LSTM Based Dynamic Flight Fault Detection for UAV Actuator

执行机构 故障检测与隔离 计算机科学 断层(地质) 聚类分析 控制理论(社会学) 人工智能 实时计算 控制(管理) 地震学 地质学
作者
Kai Guo,Na Wang,Datong Liu,Xiyuan Peng
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-13 被引量:18
标识
DOI:10.1109/tim.2022.3225040
摘要

Accurate fault detection for unmanned aerial vehicle (UAV) actuators is essential for ensuring flight safety and mission completion. Without the requirement of modeling complex physical mechanism, data-driven actuator fault detection approaches have attracted much attention. Among them, the long short-term memory (LSTM) approach has shown superior performance due to its capability of modeling complex spatial–temporal features. However, the modeling uncertainty of LSTM is actually changeable under different flight conditions, which has not been well considered in the existing researches. In this article, a novel uncertainty-aware LSTM (UA-LSTM) based dynamic flight condition fault detection approach for UAV actuator is proposed. A prediction-based fault detection model is first set up based on LSTM, utilizing the information from both the flight action modes and the actuator effect. Its inputs are specifically selected by both physical mechanism and data correlation analysis. Furthermore, time-series features indicating the prediction uncertainty of the model are constructed on the selected inputs to characterize dynamic flight conditions more accurately. Then, an adaptive threshold estimation space is set up based on an enhanced distribution-based condition clustering approach. Fault detection thresholds for various flight conditions are obtained and are smoothed to reduce the influence of disturbances. Finally, the fault detection model with stepwise adaptive detection threshold is acquired. Experimental results on both simulation and real flight data illustrate that the proposed approach is superior for actuator fault detection under dynamic flight conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Kirisame完成签到,获得积分10
1秒前
1秒前
2秒前
赘婿应助zoe采纳,获得10
2秒前
风柳发布了新的文献求助10
3秒前
fff发布了新的文献求助10
3秒前
暮封完成签到,获得积分20
3秒前
熊二浪发布了新的文献求助10
3秒前
3秒前
georgett完成签到,获得积分10
4秒前
明芷蝶完成签到,获得积分10
4秒前
5秒前
梅列军完成签到 ,获得积分10
5秒前
彳亍1117应助lemon采纳,获得20
5秒前
6秒前
暮霭沉沉应助LACIA采纳,获得10
6秒前
王灿灿发布了新的文献求助10
6秒前
6秒前
lizz关注了科研通微信公众号
6秒前
7秒前
7秒前
人群是那么像羊群完成签到 ,获得积分10
10秒前
YYL完成签到,获得积分10
10秒前
希望天下0贩的0应助Judy采纳,获得10
10秒前
花杨梅发布了新的文献求助10
11秒前
科研小狗发布了新的文献求助10
11秒前
盼盼小面包完成签到,获得积分10
11秒前
我是老大应助阿鹏采纳,获得10
12秒前
12秒前
12秒前
564654SDA完成签到,获得积分10
12秒前
13秒前
13秒前
多情怜蕾发布了新的文献求助10
13秒前
甜蜜滑板发布了新的文献求助10
14秒前
hiswen完成签到,获得积分10
14秒前
薇薇辣完成签到,获得积分10
14秒前
勤奋的绿柏完成签到,获得积分10
14秒前
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153026
求助须知:如何正确求助?哪些是违规求助? 2804161
关于积分的说明 7857753
捐赠科研通 2461956
什么是DOI,文献DOI怎么找? 1310610
科研通“疑难数据库(出版商)”最低求助积分说明 629314
版权声明 601794